Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The design and operation of an industrial penicillin-V deacylation reactor is simulated, using a kinetic expression and mass transport parameters for the immobilized enzyme particles which were determined experimentally in a previous study. It is desirable to use a series of equalsized plug flow reactors with pH control at the entrance to each reactor, and with a possibility of recycling reactant in each reactor. These measures are necessary to avoid a steep pH profile through the reactor; the deacylation reaction is accompanied by an increase of acidity of the reaction medium, and H+ is a strong inhibitor and may deactivate the enzyme. The optimization study which is carried out at a fixed penicillin conversion of x = 0.99 shows that it is uneconomical to use penicillin feed concentrations above 150mM-175mM, and that the buffer concentration in the reaction medium should not be less than 50mM-75mM. Increasing the number of reactors from 4 to 8 or 10 leads to higher productivity of 6-APA, and a moderate recycle in the first couple of reactors diminishes the sharp decrease in pH which will be found in a straight plug flow reactor operation of the equipment. Higher pumping costs and lower productivity are unavoidable drawbacks of an operation mode where the separation costs for the product mixture are desired to be low.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...