Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 95-108 
    ISSN: 0006-3592
    Keywords: Xanthan fermentation ; impeller type ; power consumption ; mixing ; oxygen transfer ; Xanthan productivity ; product quality ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The rheological complexity of Xanthan fermentations presents an interesting problem from a mixing viewpoint, because the phenomena of poor bulk blending and low oxygen mass transfer rates inherent in highly viscous fermentations (and their consequences) can be systematically investigated, even at the pilot plant scale. This study in a 150 L fermentor compares the physical and biological performance of four pairs of impellers: a standard Rushton turbine, a large diameter Rushton turbine, a Prochem Maxflo T, and a Scaba 6SRGT. Accurate in-fermentor power measurements, essential for the comparison of impellers in relation to operating costs are also reported. It is demonstrated that the agitator performance in Xanthan fermentations is very specific and the choice of which impeller to use in bioreactors to obtain enhanced performance is dependant on the applied criterion. None of the criterion favored the use of the standard Rushton turbine, therefore suggesting that there are strong grounds for retrofitting these impellers with either large diameter impellers of similar design or with novel agitators. In addition, fluid dynamic modeling of cavern formation has clearly highlighted the importance of a well mixed and oxygenated region for providing the capacity for high microbial oxygen uptake rates which govern Xanthan productivity and quality. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 95-108, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...