Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 10 (1970), S. 1-3 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An empirical equation is presented which describes polymer solution viscosity, η, over the entire concentration range from a knowledge of intrinsic viscosity, [η], Huggins constant, k′, and bulk flow viscosity of polymer, η0. The equation is: \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{\eta _{sp}}}{{C[\eta]}} = \exp \left\{{\frac{{{\rm k'[}\eta {\rm]C}}}{{1 - bC}}} \right\} $\end{document} where solution viscosity, η, is contained in ηsp. No arbitrary parameters are invoked since b can be evaluated at bulk polymer (C = polymer density) where everything else is known. The equation accurately portrays the viscosity of polypropylene oxide (PPG 2025) from infinite dilution to bulk polymer in a very good solvent (benzene) and in a somewhat poorer (∼ θ) solvent (methylcyclohexane). The hydrodynamic consequences of the thermodynamic interactions between polymer and solvent are reflected in the constants. This equation should be applicable to other polymer/solvent systems, and thus be immediately useful to those working with concentrated polymer solutions.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...