Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 1161-1166 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reaction \documentclass{article}\pagestyle{empty}\begin{document}${\rm Br} + {\rm CH}_3 {\rm CHO}\buildrel1\over\rightarrow{\rm HBr} + {\rm CH}_3 {\rm CO}$\end{document} has been studied by VLPR at 300 K. We find k1 = 2.1 × 1012 cm3/mol s in excellent agreement with independent measurements from photolysis studies. Combining this value with known thermodynamic data gives k-1 = 1 × 1010 cm3/mol s. Observations of mass 42 expected from ketene suggest a rapid secondary reaction: \documentclass{article}\pagestyle{empty}\begin{document}$${\rm Br} + {\rm CH}_3 {\rm CO}\buildrel2\over\rightarrow[{\rm CH}_3 {\rm COBr}]^* \buildrel3\over\rightarrow{\rm HBr} + {\rm CH}_2 {\rm CO}$$\end{document} in which step 2 is shown to be rate limiting under VLPR conditions and k2 is estimated at 1012.6 cm3/mol s from recent theoretical models for radical recombination. It is also shown that 0 ≤ E1 ≤ 1.4 kcal/mol using theoretical models for calculation of A1 and is probably closer to the lower limit. Reaction -1 is negligible under conditions used.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...