Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Most of the existing calculations of relativistic effects in many-electron atoms or molecules are based on the Dirac-Coulomb Hamiltonian HDC. However, because the electron-electron interaction mixes positive- and negative-energy states, the operator HDC has no normalizable eigenfunctions. This fact undermines the quantum-theoretic rationale for the Dirac-Hartree-Fock (DHF) equations and therefore that of the relativistic configuration-interaction (RCI) and multiconfiguration Dirac-Fock (MCDF) methods. An approach to this problem based on quantum electrodynamics is reviewed. It leads to a configuration-space Hamilton H+U which involves positive-energy projection operators dependent on an external potential U; identification of U with the nuclear potential Vext corresponds to use of the Furry bound-state interaction picture. It is shown that the RCI method can be reinterpreted as an approximation scheme for finding eigenvalues of a Hamiltonian H+U, with U identified as the DHF potential; the theoretical interpretation of the MCDF method needs further clarification. It is emphasized that if U differs from Vext one must consider the effects of virtual-pair creation by the difference potential δU = Vext - U; an approximate formula for the level-shift arising from δU is derived. Some ideas for dealing with the technical problems introduced by the projection operators are discussed and relativistic virial theorems are given. Finally, a possible scheme for adapting current MCDF methods to Hamiltonians involving projection operators is described.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...