Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 62 (1997), S. 89-96 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We presented a calculation of the total and partial decay widths of vibrational predissociation (VP) of the HeI2 molecule for low initial vibrational excitations from the lowest van der Waals (vdW) state with total angular momentum J = 0. A time-dependent golden rule wave-packet method was employed in our numerical calculations for the decay widths. The computed total decay widths, lifetimes, and rates of VP are in fairly good agreement with those extrapolated from the experimental data available. Predicted total decay widths as a function of initial vibrational levels exhibit a highly nonlinear behavior. These results demonstrate that a quantum mechanical decay mode for low vibrational excitation remains as well. The total propagation time needed in the time-dependent golden rule wave-packet calculations is much shorter than is the lifetime of the predissociation of HeI2. It is shown that the final-state interaction between the fragments is important for determining the final rotational-state distribution (partial decay width). We find that the major peak position in the final rotational-state distribution shifts to lower rotational energy levels with increase of the initial vibrational quantum number, which is evidently different from that for higher vibrational levels. This fact can be clearly explained by the dependence of the amount of kinetic energy released to the product degrees of freedom on the initial vibrational state. © 1997 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...