Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 10 (1989), S. 63-76 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Matrix elements for the first and second derivatives of the internal coordinates with respect to Cartesian coordinates are reported for stretching, linear, nonlinear, and out-of-plane bending and torsional motion. Derivatives of the energy with respect to the Cartesian coordinates are calculated with the chain rule. Derivatives of the energy with respect to the internal coordinates are straightforward, but the calculation of the derivatives of the internal coordinates with respect to the Cartesian coordinates can be simplified by the following two steps outlined in this article. First, the number of terms in the analytical functions can be reduced or will vanish when the derivatives of the bond length, bond angle, and torsion angle are reported in a local coordinate system in which one bond lies on an axis and an adjacent bond lies in the plane of two axes or is projected onto perpendicular planes for linear and out-of-plane bending motion. Second, a simple rotation transforms these derivatives to the appropriate orientation in the space-fixed molecular coordinate system. Functions of the internal coordinates are invariant with respect to translation and rotation. The translational invariance and the symmetry of the second derivatives for a system with L atoms are used to select L-1- and L(L-1)/2-independent first and second derivatives, respectively, of which approximately half of the latter vanish in the local coordinate system. The rotational invariance permits the transformation of the simplified derivatives in the local coordinate system to any orientation in space. The approach outlined in this article simplifies the formulas by expressing them in a local coordinate system, identifies the most convenient independent elements to compute, from which the dependent ones are calculated, and defines a transformation to the space-fixed molecular coordinate system.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...