Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 10 (1989), S. 603-615 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Hartree-Fock 6-31G(d) structures for the neutral, positive ion, and negative ion bimolecular complexes of NH3 with the first- and second-row hydrides AHn (AHn = NH3, OH2, FH, PH3, SH2, and ClH) have been determined. All of the stable neutral complexes except (NH3)2, the positive ion complexes with NH3 as the proton acceptor, and the negative ion complexes containing first-row anions exhibit conventional hydrogen bonded structures with essentially linear hydrogen bonds and directed lone pairs of electrons. The positive ion complex NH4+ … OH2 has the dipole moment vector of H2O instead of a lone pair directed along the intermolecular line, while the complexes of NH4+ with SH2, FH, and ClH have structures intermediate between the lone-pair directed and dipole directed forms. The negative ion complexes containing second-row anions have nonlinear hydrogen bonds. The addition of diffuse functions on nonhydrogen atoms to the valence double-split plus polarization 6-31G(d,p) basis set usually decreases the computed stabilization energies of these complexes. Splitting d polarization functions usually destabilizes these complexes, whereas splitting p polarization functions either has no effect or leads to stabilization. The overall effect of augmenting the 6-31G(d,p) basis set with diffuse functions on nonhydrogen atoms and two sets of polarization functions is to lower computed stabilization energies. Electron correlation stabilizes all of these complexes. The second-order Møller-Plesset correlation term is the largest term and always has a stabilizing effect, whereas the third and fourth-order terms are smaller and often of opposite sign. The recommended level of theory for computing the stabilization energies of these complexes is MP2/6-31+G(2d,2p), although MP2/6-31+G(d,p) is appropriate for the negative ion complexes.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...