Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 22 (1996), S. 961-978 
    ISSN: 0271-2091
    Keywords: planar liquid sheets ; perturbation methods ; film casting ; film coating ; plane stagnation flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Asymptotic methods are employed to derive the leading-order equations which govern the fluid dynamics of time-dependent, incompressible, planar liquid sheets at low Reynolds numbers using as small parameter the slenderness ratio. Analytical and numerical solutions of relevance to both steady film casting processes and plane stagnation flows are obtained with the leading-order equations. It is shown that for steady film casting processes the model which accounts for both gravity and low-Reynolds-number effects predicts thicker and slower planar liquid sheets than those which neglect a surface curvature term or assume that Reynolds number is zero, because the neglect of the curvature term and the assumption of zero Reynolds number are not justified at high take-up velocities owing to the large velocity gradients that occur at the take-up point. It is also shown that for Reynolds number/Froude number ratios larger than one, models which neglect the surface curvature or assume a zero Reynolds number predict velocity profiles which are either concave or exhibit an inflection point, whereas the model which accounts for both curvature and low-Reynolds-number effects predicts convex velocity profiles. For plane stagnation flows it is shown that models which account for both low-Reynolds-number and curvature effects predict nearly identical results to those of models which assume zero Reynolds number. These two models also predict a faster thickening of the planar liquid sheet than models which account for low- Reynolds-number effects but neglect the surface curvature. This curvature term is very large near the stagnation point and cannot be neglected there. It is also shown that the thickening of the sheet occurs closer to the stagnation point as the Reynolds number/Froude number ratio is increased, i.e. as the magnitude of the gravitational acceleration is increased. In addition it is shown that large surface tension introduces a third-order spatial derivative in the axial momentum equation at leading order.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...