Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 1281-1302 
    ISSN: 0271-2091
    Keywords: large eddy simulation ; turbulent flow ; circular cylinder ; accuracy ; finite volume method ; subgrid scale model ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The turbulent flow past a circular cylinder (Re=3900) was computed by large eddy simulation (LES). The objective was not to investigate the physical phenomena of this flow in detail but to study numerical and modeling aspects which influence the quality of LES solutions. Concerning the numerical method, the most important component is the discretization of the non-linear convective fluxes. Five different schemes were investigated. Also, the influence of different grid resolutions was examined. Two aspects play an important role on the modeling side, namely the near-wall model and the subgrid scale model. Owing to the restriction to low Reynolds numbers in this study, no-slip boundary conditions were used at solid walls. Therefore, only the second aspect was taken into account. Two different subgrid scale models were applied. Additionally, LES computations without any subgrid scale modeling were carried out in order to prove the performance of the models. The results were evaluated by comparison with available experimental data. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...