Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 73 (1995), S. 91-104 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This study compares different simple mixing schemes for one-dimensional models and then focuses on the two-scale mixing approach. Two-scale mixing consists of local diffusion between adjacent grid levels and nonlocal mixing over the bulk of the boundary layer (nonlocal mixing). The latter represents nonlocal mixing by the boundary-layer scale eddies. A common example of two-scale mixing is the formulation of the turbulent heat transport in terms of an eddy diffusivity to represent small-scale diffusion and a “countergradient correction” to represent boundary-layer scale transport. Most existing two-scale approaches are applied to heat and moisture transport while momentum transport is simultaneously parameterized only in terms of a local diffusivity without nonlocal mixing. This study attempts to correct this inconsistency. The resulting model is compared with Lidar observations of spatially averaged winds which are found to be superior to radiosonde and aircraft data for determining the mean structure. The two-scale mixing correctly predicts the observed well mixed conditions for momentum while the original model based on a local diffusivity for momentum fails to produce a well mixed state. Unfortunately, the “best” value for the adjustable coefficient in the nonlocal mixing part of the two-scale approach appears to depend on baroclinity in a way which can not be completely resolved from existing data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...