Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of flexible manufacturing systems 7 (1995), S. 5-26 
    ISSN: 1572-9370
    Keywords: cell configuration ; cycle time ; linear programming method ; longest path method ; movement network ; movement schedule (cycle) ; part input sequence ; sequence processing time ; waiting time
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper, we analyze the efficiency of a given robot movement schedule for the case of a flow shop robotic production cell withm different machines, one input conveyor, and one output conveyor. We begin with the case of one-robot cells and extend our results to multirobot cells. The paper studies the efficiency of a movement schedule for identical parts by defining a movement network associated with this schedule. This network models any cell layout and applies to multirobot cells. Using the movement network, we propose two cycle time evaluation methods, the first using linear programming and the second based on finding a longest path. The latter method generates a procedure to obtain an analytical formula for the cycle time. We extend the proposed methods to study the efficiency of a given input sequence (schedule) for different parts, that is, to determine the sequence processing time. The results obtained here allow us to quickly evaluate the efficiency of any given feasible movement schedule, for identical or different parts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...