Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Intensive care medicine 23 (1997), S. 208-213 
    ISSN: 1432-1238
    Keywords: Key words High-frequency ventilation ; Pediatric intensive care
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: To assess the efficacy and reliability of neonatal high-frequency ventilators. Design: Bench evaluation of neonatal high-frequency ventilators. Setting: Physiology department and university hospital neonatal intensive care unit. Interventions: HFV-Babylog 8000 (Dräger Medical), OHF 1 (Dufour), and SensorMedics 3100A (SensorMedics) ventilators were connected to a neonatal test-lung. Tidal volume, peak-to-peak pressure amplitude, and mean airway pressure were measured for several ventilator settings, endotracheal tube sizes, and lung compliances. Measurements and results: Increasing peak-to-peak pressure resulted in a linear increase in tidal volume delivery in the 0–30% range of maximum amplitude. No significant increase in tidal volume was observed with the HFV-Babylog8000 when pressure amplitude was above 50%. The maximum tidal volume delivered was substantially smaller with the HFV-Babylog8000 than with the OHF1 or SensorMedics3100A. Tidal volume increased with endotracheal tube size with all three ventilators. Increasing test-lung compliance resulted in lower tidal volumes only with OHF1. Decreasing mean airway pressure was responsible for a decrease in tidal volume delivery with HFV-Babylog8000. Conclusion: We found that under our test conditions two of the three ventilators delivered adequate tidal volumes at the usual frequency of 15Hz, regardless of the size of the endotracheal tube and of the mechanical properties of the respiratory system. When lung compliance increased or mean airway pressure decreased, both of which are common events during the recovery phase of hyaline membrane disease, we found that the intrinsic properties of two of the ventilators tested were responsible for a decrease in tidal volume. This decrease may account for some cases of heretofore unexplained hypercapnia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...