Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 47 (1984), S. 105-124 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Stratigraphic reconstruction of the complete sequence of deposits that formed the Fossa cone of Vulcano has distinguished four principal eruptive cycles: Punte Nere, Palizzi, Commenda, and Pietre Cotte. At least three additional eruptive cycles, one of which ends with the Campo Sportivo lava, occur between deposits of the Punte Nere and Palizzi cycles. However, exposure is inadequate for their characterization. The assignment of the modern deposits that follow the Pietre Cotte lava is uncertain. Deposits of each cycle follow a similar stochastic pattern that is controlled by a decrease in the effect of water/melt interaction. The normal sequence of pyroclastic products for each cycle starts with wet-surge beds, followed by dry-surge horizons, fall deposits, and finally lava flows. Absolute age determinations have been made on each cycle-ending lava flow. Wet-surge deposits normally occur near the crater rim, whereas dry-surge deposits are more widespread, reaching the surrounding caldera wall in many places. Thick fall deposits are confined to a zone extending about 800 m from the crater rim. Lava flows normally reach the base of the cone. The greatest hazard at Fossa is related to surge eruptions. The thickness of dry-surge deposits on the flanks of the cone increases away from the crater, but they pinch out toward the source near the crater rim. SEM analysis of the surface textures of juvenile glass clasts from dry-surge deposits confirms that the dominant control on the eruptive mechanism is water/melt interaction. Only slight modifications are induced on grain surfaces during transport. Particles from the Palizzi dry-surge beds lack surface textures characteristic of fall pyroclasts which suggests that ballistic fragments were not incorporated into the dense portion of the turbulent surge cloud. A quantitative analysis of the dispersal of products from the Palizzi cycle allowed creation of a computer-generated map for this eruption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...