Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 3114-3116 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this work, we demonstrate the applicability of conducting atomic force microscopy (AFM) for the quantitative electrical characterization of thin (3–40 nm) SiO2 films on a nanometer scale length. Fowler–Nordheim (F–N) tunneling currents on the order of 0.02–1 pA are measured simultaneously with the oxide surface topography by applying a voltage between the AFM tip and the silicon substrate. Current variations in the F–N current images are correlated to local variations of the oxide thickness on the order of several angströms to nanometers. From the microscopic current–voltage characteristics the local oxide thickness can be obtained with an accuracy of ±0.3 nm. Local oxide thinning of up to 3.3 nm was found at the edge between gate oxide and field oxide of a metal-oxide-semiconductor capacitor with a 20-nm-thick gate oxide. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...