Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2014-02-26
    Description: In this paper we consider the multiple knapsack problem which is defined as follows: given a set $N$ of items with weights $f_i$, $i \in N$, a set $M$ of knapsacks with capacities $F_k$, $k \in M$, and a profit function $c_{ik}, i \in N, k \in M$; find an assignment of a subset of the set of items to the set of knapsacks that yields maximum profit (or minimum cost). With every instance of this problem we associate a polyhedron whose vertices are in one to one correspondence to the feasible solutions of the instance. This polytope is the subject of our investigations. In particular, we present several new classes of inequalities and work out necessary and sufficient conditions under which the corresponding inequality defines a facet. Some of these conditions involve only properties of certain knapsack constraints, and hence, apply to the generalized assignment polytope as well. The results presented here serve as the theoretical basis for solving practical problems. The algorithmic side of our study, i.e., separation algorithms, implementation details and computational experience with a branch and cut algorithm are discussed in the companion paper SC 93-07.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...