Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2020-08-05
    Description: Let the design of an experiment be represented by an $s-$dimensional vector $w$ of weights with nonnegative components. Let the quality of $w$ for the estimation of the parameters of the statistical model be measured by the criterion of $D-$optimality, defined as the $m$th root of the determinant of the information matrix $M(w)=\sum_{i=1}^s w_i A_i A_i^T$, where $A_i$,$i=1,\ldots,s$ are known matrices with $m$ rows. In this paper, we show that the criterion of $D-$optimality is second-order cone representable. As a result, the method of second-order cone programming can be used to compute an approximate $D-$optimal design with any system of linear constraints on the vector of weights. More importantly, the proposed characterization allows us to compute an exact $D-$optimal design, which is possible thanks to high-quality branch-and-cut solvers specialized to solve mixed integer second-order cone programming problems. Our results extend to the case of the criterion of $D_K-$optimality, which measures the quality of $w$ for the estimation of a linear parameter subsystem defined by a full-rank coefficient matrix $K$. We prove that some other widely used criteria are also second-order cone representable, for instance, the criteria of $A-$, $A_K$-, $G-$ and $I-$optimality. We present several numerical examples demonstrating the efficiency and general applicability of the proposed method. We show that in many cases the mixed integer second-order cone programming approach allows us to find a provably optimal exact design, while the standard heuristics systematically miss the optimum.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...