Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-26
    Description: In molecular dynamics applications there is a growing interest in mixed quantum-classical models. The {\em quantum-classical Liouville equation} (QCL) describes most atoms of the molecular system under consideration by means of classical phase space density but an important, small portion of the system by means of quantum mechanics. The QCL is derived from the full quantum dynamical (QD) description by applying the Wigner transform to the classical part'' of the system only. We discuss the conditions under which the QCL model approximates the full QD evolution of the system. First, analysis of the asymptotic properties of the Wigner transform shows that solving the QCL yields a first order approximation of full quantum dynamics. Second, we discuss the adiabatic limit of the QCL. This discussion shows that the QCL solutions may be interpretated as classical phase space densities, at least near the adiabatic limit. Third, it is demonstrated that the QCL yields good approximations of {\em non-adiabatic quantum effects,} especially near so-called {\em avoided crossings} where most quantum-classical models fail.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...