Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1990-1994  (3)
  • 1980-1984
  • 1975-1979
  • 1960-1964
  • 1991  (3)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 1990-1994  (3)
  • 1980-1984
  • 1975-1979
  • 1960-1964
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 1294-1299 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper describes novel rapid thermal annealing for GaAs wafers under vacuum conditions (VRTA) using a three-zone lamp power control method. The developed RTA technology eliminates generation of crystallographic slip lines and wafer deformation due to the convection effect caused by ambient gas. A three-zone lamp power control method produced excellent uniformity in the activated layer, presenting the best data ever attained by RTA. Also, numerical simulation demonstrates improved temperature uniformity achieved by a three-zone lamp power control method which reduces the edge radiation effect. Moreover, we have found that VRTA technology is particularly effective for annealing large-size GaAs wafers, which are more easily deformed or slip-lined than 2-in. wafers. We have applied VRTA to fabricating ion-implanted n+ contact regions for self-aligned 0.5-μm-gate doped-channel hetero-metal-insulator-semiconductor field-effect transistors with a lightly doped drain, and have obtained excellent Vt uniformity, σVt=19 mV, on a 2-in.-diam wafer. These features, together with a simple wafer-supporting method, using several quartz pins, cause the improved VRTA technology to provide high throughput and production yield for high-performance short-gate GaAs integrated circuits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 2793-2796 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The lateral crystal habits of n-alkanes (n-C n H2n+2) have been observed just below the melting points by optical microscopy for n=18, 19, 20, 22, 24, 34, 44, 50 and 65. The shape of the crystals depends on the crystal phase: circular in the rotator phase, lenticular in phase C, and diamond in the low-temperature phase. The rounding of the lateral shape can be explained in terms of thermal roughening of the lateral faces in the disordered phases at high temperature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 2793-2796 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The lateral crystal habits ofn-alkanes (n-C n H2n+2) have been observed just below the melting points by optical microscopy forn=18, 19, 20, 22, 24, 34, 44, 50 and 65. The shape of the crystals depends on the crystal phase: circular in the rotator phase, lenticular in phase C, and diamond in the low-temperature phase. The rounding of the lateral shape can be explained in terms of thermal roughening of the lateral faces in the disordered phases at high temperature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...