Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 2005-2009
  • 1995-1999  (2)
  • 1945-1949
  • Hydrothermal  (1)
  • Keywords Diamonds  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 2005-2009
  • 1995-1999  (2)
  • 1945-1949
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Materials research innovations 1 (1997), S. 117-129 
    ISSN: 1433-075X
    Keywords: Keywords Diamonds ; Precipitation ; Metallic solutions ; Carbon-rich amorphous alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  We describe herein a new process for the synthesis of diamond in the presence of various metals and atomic H in a microwave plasma. Along with the traditional high pressure high temperature (HPHT) process and the chemical vapor deposition (CVD) process, for diamonds synthesis this makes it a third route for this purpose. Starting materials used are intimate mixtures of various forms of carbon with one of many metals. These are exposed to a pure H2 microwave-assisted plasma at temperatures in the range 600–1100º C. Novel amorphous alloys are formed containing 40 to 70 atomic percent of carbon. From these liquid alloys diamonds are precipitated with temperature change and/or with possible evaporation of complex, hydrogen-rich Me−C−H species. The carbon content of the metallic liquid drops sequentially down to 5–6%C as more and more diamonds are precipitated therefrom. Au, Ag, Fe, Cu, Ni, and many other metals are used in most runs. Others e.g. La, Mn, Sn, each give distinctive habits or morphology to the diamonds grown. Single crystals have been grown from these MexCyHz metallic liquids on natural diamond substrates, using the same low pressure solid state source (LPSSS) technique. They show high perfection. A mechanism is proposed quite analogous to the HPHT process, to explain this precipitation from metallic solutions, with atomic hydrogen ”substituting” for high pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Materials research innovations 1 (1997), S. 44-52 
    ISSN: 1433-075X
    Keywords: Key words Microwave ; Synthesis ; Processing ; WC ; BaTiO3 ; Hydrothermal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  The innovations in microwave processing of ceramics have been dominated to date by serendipitous discovery, because the interaction between such radiation as delivered via available tools and the materials of widely varying properties, sizes, and shapes is so complex that it has defied quantitative analysis. For over 10 years a wide variety of inorganic ceramic and semiconducting materials have been synthesized, sintered, and reacted in our own labs, including microwave hydrothermal synthesis of metals, ferrites, and electroceramic phases. These local results are summarized and used as the reference point for reporting on two different new advances: sintering of WC-Co composite tool bits and other similar objects in under 15 min, while retaining extremely fine microstructures, without any grain growth inhibitors; using reduced TiO2 or Ta2O5 for the synthesis of phases such as BaTiO3, Ba3MgTa2O9, and Pb(Zr.Ti)O3 in a few minutes in a 2.45 GHz field at the astonishing temperatures of 300–700 ºC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...