Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 2000-2004  (1)
  • 1975-1979  (2)
  • Biochemistry and Biotechnology  (2)
  • Gene expression
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Extremophiles 4 (2000), S. 321-331 
    ISSN: 1433-4909
    Keywords: Key words Cold shock ; Low-temperature adaptation ; Psychrophile ; Adaptive mechanisms ; Antarctic Archaea ; Gene expression ; Protein structure ; Review
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We live on a cold planet where more than 80% of the biosphere is permanently below 5°C, and yet comparatively little is known about the genetics and physiology of the microorganisms inhabiting these environments. Based on molecular probe and sequencing studies, it is clear that Archaea are numerically abundant in diverse low-temperature environments throughout the globe. In addition, non-low-temperature-adapted Archaea are commonly exposed to sudden decreases in temperature, as are other microorganisms, animals, and plants. Considering their ubiquity in nature, it is perhaps surprising to find that there is such a lack of knowledge regarding low-temperature adaptation mechanisms in Archaea, particularly in comparison to what is known about archaeal thermophiles and hyperthermophiles and responses to heat shock. This review covers what is presently known about adaptation to cold shock and growth at low temperature, with a particular focus on Antarctic Archaea. The review highlights the similarities and differences that exist between Archaea and Bacteria and eukaryotes, and addresses the potentially important role that protein synthesis plays in adaptation to the cold. By reviewing the present state of the field, a number of important areas for future research are identified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 17 (1975), S. 557-570 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Of the experimental methods available for obtaining data to estimate the biological kinetic parameters μm, Ks, and Yeach requires considerable experimental effort, yet often yields somewhat imprecise estimates of the parameters, particularly Ks. Therefore it would be worthwhile to seek ways to get parameter estimates of greater precision using less experimental effort. The precision of parameter estimates is strongly dependent, upon the settings of the independent, variables used in the experiments. This dependence is explained and an attempt made to show how experimental settings can be determined that lead efficiently to precise parameter estimates with minimal effort.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 17 (1975), S. 571-583 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biokinetic parameters are usually calculated from slopes and intercepts taken from plots of experimental data. One response at an item is plotted and used for parameter estimation. Aside from problems that may be caused by transformations made when the data are plotted, this approach has the weakness of not using all the data simultaneously when there is more than one response. This paper shows how multiresponse biological data can be handled to get parameter estimates that are much more precise than those obtained using conventional methods.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...