Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0014-5793
    Keywords: Ethanol-tolerance ; Heat shock ; Protein synthesis ; Thermotolerance ; Yeast
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 207 (1986), S. 149-152 
    ISSN: 0014-5793
    Keywords: Heat-shock protein ; Thermotolerance ; Yeast
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 23 (1999), S. 268-272 
    ISSN: 1476-5535
    Keywords: Keywords: marine; Sphingomonas; phylogeny; oligotroph
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Sphingomonas species play an important role in the ecology of a range of marine habitats. Isolates and 16S-rRNA clones have been obtained from corals, natural and artificial sources of marine hydrocarbons and eutrophic and oligotrophic waters, and have been isolated as hosts for marine phages. In addition they are found in oceans spanning temperature ranges from polar to temperate waters. While less is known about marine sphingomonads in comparison to their terrestrial counterparts, their importance in microbial ecology is evident. This is illustrated by, for example, the numerical dominance of strain RB2256 in oligotrophic waters. Furthermore, the known marine sphingomonads represent a phylogenetic cross-section of the Sphingomonas genus. This review focuses on our present knowledge of cultured isolates and 16S-rDNA clones from marine environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1433-4909
    Keywords: Key words Elongation factor G ; Psychrotolerant ; Protein structure ; Arthrobacter ; Cold adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The first structural analysis of elongation factor G (EF-G) from a cold-adapted bacterium is presented. EF-G is an essential protein involved in the elongation process during protein synthesis and is therefore thought to play a crucial role in the low-temperature adaptation of cold-adapted microorganisms. To define its importance, the EF-G gene (fus) from the psychrotolerant bacterium Arthrobacter globiformis SI55 was cloned and sequenced. The deduced primary structure of the elongation factor is composed of 700 amino acids with a predicted molecular mass of 77.4 kDa. A three-dimensional model of the protein was constructed based on the known crystal structures of structurally homologous proteins. Structural features that might potentially be important for activity and flexibility at low temperature were deduced by comparisons with models of the EF-G proteins from the closely related mesophiles Micrococcus luteus and Mycobacterium tuberculosis. These features include a loss in the number of salt bridges in intradomain and interdomain positions, increased solvent interactions mediated by greater charge and polarity on domain surfaces, loop insertions, loss of proline residues in loop structures, and an increase of hydrophobicity in core regions. Specific changes have also been identified in the catalytic domain (G domain) and sites of potential ribosome interaction, which may directly affect guanosine triphosphate (GTP) hydrolysis and elongation rates at low temperature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Extremophiles 4 (2000), S. 321-331 
    ISSN: 1433-4909
    Keywords: Key words Cold shock ; Low-temperature adaptation ; Psychrophile ; Adaptive mechanisms ; Antarctic Archaea ; Gene expression ; Protein structure ; Review
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We live on a cold planet where more than 80% of the biosphere is permanently below 5°C, and yet comparatively little is known about the genetics and physiology of the microorganisms inhabiting these environments. Based on molecular probe and sequencing studies, it is clear that Archaea are numerically abundant in diverse low-temperature environments throughout the globe. In addition, non-low-temperature-adapted Archaea are commonly exposed to sudden decreases in temperature, as are other microorganisms, animals, and plants. Considering their ubiquity in nature, it is perhaps surprising to find that there is such a lack of knowledge regarding low-temperature adaptation mechanisms in Archaea, particularly in comparison to what is known about archaeal thermophiles and hyperthermophiles and responses to heat shock. This review covers what is presently known about adaptation to cold shock and growth at low temperature, with a particular focus on Antarctic Archaea. The review highlights the similarities and differences that exist between Archaea and Bacteria and eukaryotes, and addresses the potentially important role that protein synthesis plays in adaptation to the cold. By reviewing the present state of the field, a number of important areas for future research are identified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...