Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1995-1999  (2)
  • (Human)  (1)
  • colocalization  (1)
  • pheochromocytoma  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1995-1999  (2)
Year
  • 1
    ISSN: 1435-1463
    Keywords: Keywords: Aromatic L-amino acid decarboxylase ; brain ; colocalization ; GTP cyclohydrolase I ; human ; immunohistochemistry ; tetrahydrobiopterin ; tyrosine hydroxylase.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary. Guanosine triphosphate (GTP) cyclohydrolase I (GCH) is the first and rate-limiting enzyme for biosynthesis of tetrahydrobiopterin, the cofactor of tyrosine hydroxylase (TH). Our previous study reported the presence of GCH in several neuronal groups in animal brains using a newly raised anti-GCH antibody. The present study aims at elucidating whether GCH and TH coexist in the same neurons of the human brain with the aid of immunohistochemical dual labeling. GCH-immunoreactivity was observed in the cell bodies and fibers of monoaminergic neurons of the human brain. Neurons which contain both enzymes are seen in the human substantia nigra, ventral tegmental area, locus coeruleus, dorsal raphe, and zona incerta. In these regions, almost all the cells also show immunoreactivity for aromatic L-amino acid decarboxylase (AADC), the second step enzyme for catecholamine synthesis, indicating that these neurons are catecholaminergic. However, some neurons in the dorsal and dorsomedial hypothalamic nuclei are stained only for GCH or TH. They appear to constitute an independent cell group in the human brain. The present observation suggests that L-dopa is not produced in the cells immunoreactive for TH but not for GCH, and that TH in these cells which lack GCH may have an unidentified role other than dopa synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: GTP cyclohydrolase I ; tetrahydrobiopterin ; cDNA ; mRNA ; pheochromocytoma ; (Human)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Although the existence of three different cDNA forms of human GTP cyclohydrolase I (GCH I) have been reported (Togari et al., 1992), the full-length sequence of any human GCH I cDNA involving poly (A) tail has not yet been documented. In the present study, we first isolated a full-length cDNA clone encoding human GCH I type 1 from human pheochromocytoma cDNA library. The length of the cDNA insert was 2,921 base pairs including poly (A) tail. RNA blot analysis showed a single niRNA species of 4.0kb in human pheochromocytoma tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...