Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1995-1999  (2)
  • Cell expansion  (1)
  • leaf dehydration/rehydration  (1)
  • 1
    ISSN: 1432-2048
    Keywords: Key words:Allium (root development) ; Ascorbate ; Cell division ; Cell expansion ; Hydroxyproline-containing protein ; Root development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Post-translational hydroxylation of peptide-bound proline residues, catalyzed by peptidyl-prolyl-4 hydroxylase (EC 1.14.11.2) using ascorbate as co-substrate, is a key event in the maturation of a number of cell wall-associated hydroxyproline-rich glycoproteins (HRGPs), including extensins and arabinogalactan-proteins, which are involved in the processes of wall stiffening, signalling and cell proliferation. Allium cepa L. roots treated with 3,4-DL-dehydroproline (DP), a specific inhibitor of peptidyl-prolyl hydroxylase, showed a 56% decrease in the hydroxyproline content of HRGP. Administration of DP strongly affected the organization of specialized zones of root development, with a marked reduction of the post-mitotic isodiametric growth zone, early extension of cells leaving the meristematic zone and a huge increase in cell size. Electron-microscopy analysis showed dramatic alterations both to the organization of newly formed cell walls and to the adhesion of the plasma membranes to the cell walls. Moreover, DP administration inhibited cell cycle progression. Root tips grown in the presence of DP also showed an increase both in ascorbate content (+53%) and ascorbate-specific peroxidase activity in the cytosol (+72%), and a decrease in extracellular “secretory” peroxidase activity (−73%). The possible interaction between HRGPs and the ascorbate system in the regulation of both cell division and extension is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5087
    Keywords: Sporobolus stapfianus ; resurrection plant ; desiccation-tolerance ; leaf morphology ; leaf ultrastructure ; leaf dehydration/rehydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The resurrection species Sporobolus stapfianus Gandoger has been studied by LM, TEM and SEM in order to define the leaf morphology and fine structure and to analyse the cellular changes occurring during the processes of dehydration and rehydration of the plant. Some characteristics of the fully hydrated leaf and some ultrastructural and physiological events which take place during leaf wilting are discussed in relation to their possible role in plant desiccation-tolerance. The leaves of S. stapfianus show several characteristics common among xerophytic species. In the resurrection leaf they could play a role in slowing down the drying rate, thus leaving time to activate the mechanisms protecting the cell structures against drought damage. Actually, the S. stapfianus leaves do not undergo important cellular alterations during dehydration. The chloroplasts, in particular, retain part of their photosynthetic pigments and thylakoid membranes. Upon rewatering leaf recovery is rather fast and the tissue structure and cell organization of the fully hydrated state are already regained after two days.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...