Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (12)
  • 1995-1999  (12)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 116 (1997), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The reciprocal translocation 5BL-7BL and 5BS-7BS was widespread in West European wheats 30 years ago, and is probably present in many of their descendants today. In varieties with a history of durable adult-plant resistance to yellow rust and carrying this translocation, removal of the 5BS-7BS chromosome gave adult plants which were much more susceptible. It was suggested that this chromosome might therefore carry the gene(s) responsible for a major part of their resistance and possibly their durability. To test this, a series of lines was developed in which 5BS-7BS chromosomes from both resistant and susceptible varieties were substituted into a number of the durably resistant varieties. In every case, the substituted 5BS-7BS chromosome, irrespective of origin, was found to produce the resistant phenotype, indicating that background chromosomes were responsible for the differences between the varieties. The resistance and durability of the resistant varieties cannot therefore be due solely to the translocated chromosome. In similar experiments, the 5BS and 7BS arms from varieties not carrying the translocation were substituted into a variety carrying the translocation. In each instance, the lines with the substituted arms were much more susceptible than their recipient, confirming the major effect of the 5BS-7BS chromosome on resistance. The complete correlation between the translocation and resistance and between increased susceptibility and its absence suggests that the gene(s) for adult-plant resistance, located on the 5BS-7BS chromosome, may be closely linked to the break point. Alternatively, it may be a consequence of the close relatedness of some of the varieties. The presence of this gene(s) might be a factor explaining the prevalence of this translocation in some West European wheats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 114 (1995), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The vast majority of the world's acreage of semi-dwarf wheat varieties is at present cultivated with varieties carrying one of two genetically similar dwarfing genes, Rht1 and Rht2, derived from the Japanese variety ‘Norin 10’. Near-isogenic lines have been developed and tested to determine the breeding potential of an allelic variant of Rht1, designated Rht1(B. dw).Following its introduction into four varietal backgrounds, Rht1 (B. dw) was seen to reduce height by around 25%, to increase the number of grains setting in spikelets and ears by around 20%, to reduce grain weight by 10%, and to increase yields of plants grown under spaced or drilled conditions by about 8%.When compared to the commercially utilized Rht1 allele, as near isogenic lines in a ‘Mercia’ varietal background, Rht1 (B. dw) gives a significantly greater reduction in plant height, a greater increase in spikelet and ear fertilities, slightly less reduction in 1000-grain weight, and significantly higher spikelet, ear and plot yields. If these results are repeatable in other varietal backgrounds, over seasons, and under differing environmental conditions, Rht1 (B. dw) should have considerable commercial potential as an alternative allele for producing shorter-than-average, high-yielding, semi-dwarf wheat varieties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 114 (1995), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Six ‘Chinese Spring/Triticum spelta’ substitution lines for chromosomes 1A, 1D (duplicates), 3D (duplicates), 6D, and one ‘Chinese Spring/ Marquis’ substitution line for chromosome 2B were studied for tissue-culture response (TCR). The results reported here indicate that chromosomes 2B and 6D are critical for TCR, whereas chromosome ID affects callus weight only. Chromosomes 1A and 3D were not found to be critical, however, these chromosomes may carry genes with minor effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 118 (1999), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Chromosome 3A of wheat is known to carry earliness per se genes. To determine the number of genes and their arm location, ear emergence time under a controlled environment was nvestigated using ditelosomic lines and homozygous recombinant substitution lines developed between chromosome 3A homologues from (Timstein) and (Chinese Spring) (CS) in a CS genetic background. Because the ear emergence distribution was discontinuous and two separate modes were produced, the 86 recombinant lines could be divided into 21 lines as the early ‘Timstein’3A type and 65 lines as the late CS type. This agrees with the 1:3 independent segregation of two genes both located on chromosome 3A. Therefore, two hypotheses can be proposed, either CS(‘Timstein’ 3A) carries two genes and both are necessary to give early ear emergence, or one gene for early ear emergence is present on (Timstein) 3A, but a suppressor is on CS 3A. The behaviour of ditelosomic 3AL and 3AS lines, with an ear emergence time identical to that of CS, suggested that one gene is located on the long arm and the other is on the short arm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: For intrachromosomal mapping of the dominant GA-sensitive dwarfing gene Rht12 and the vernalization response gene Vrn1 on chromosome 5 A, an F2 population was established using a wide (synthetic) wheat cross. In addition to restriction fragment length polymorphism (RFLP) probes four microsatellite markers were incorporated. Rht12 was mapped distally to four RFLP loci (Xmwg616, Xpsr164, Xwg114, Xpsr1201) and three microsatellite markers (Xgwm179, Xgwm410, Xgwm291), known to be located on the segment of chromosome SAL which was ancestrally translocated and is homoeologous to Triticeae 4 L. The map position of Rht12 suggests that it is homoeologous to the dominant GA-sensitive dwarfing gene Ddw1, present on chromosome 5RL. The vernalization response gene Vrn1 showed linkage to Xwg644, as might be expected from comparative maps.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words Tissue-culture response ; Wheat ; Genetic mapping ; RFLP ; QTL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Three quantitative trait loci (QTL) for tissue- culture response (Tcr) were mapped on chromosome 2B of hexaploid wheat (Triticum aestivum L.) using single-chromosome recombinant lines. Tcr-B1 and Tcr-B2, affecting both green spots initiation and shoot regeneration, were mapped in relation to RFLP markers in the centromere region and on the short arm of chromosome 2B, linked to the photoperiod-response gene Ppd2. A third QTL (Tcr-B3), influencing regeneration only, was closely related to the disease resistance locus Yr7/Sr9g on the long arm of chromosome 2B. The homoeologous relationships to the tissue-culture response loci Qsr, Qcg and Shd of barley are discussed. A possible influence of the earliness per se genes of wheat and barley is suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Key words Microsatellites ; Marker assisted breeding ; Dwarfing gene (Rht8) ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Two sets of single chromosome recombinant lines comparing 2D chromosomes from the wheat varieties ‘Ciano 67’ and ‘Mara’ with the common 2D chromosome of ‘Cappelle-Desprez’ in a ‘Cappelle-Desprez’ background were used to detect a diagnostic wheat microsatellite marker for the dwarfing gene Rht8. The genetic linkage maps place the wheat microsatellite marker WMS 261 0.6 cM distal to Rht8 on the short arm of chromosome 2D. By PCR analysis the WMS 261 alleles of ‘Mara’, ‘Cappelle-Desprez’ and ‘Ciano 67’ could be distinguished by different fragment sizes of 192 bp, 174 bp and 165 bp, respectively. A screen of over 100 international varieties of wheat showed that the three allelic variants were all widespread. It also demonstrated that a limited number of varieties carried novel WMS 261 variants of over 200 bp. Following classification of the individual recombinant lines for allelic variants at the WMS 261 locus it was possible to attribute a 7- to 8-cm reduction in plant height with the WMS 261-192-bp allele compared to the WMS 261-174-bp allele in the set of recombinant lines comparing 2D chromosomes of ‘Mara’ and ‘Cappelle-Desprez’. A height reduction of around 3 cm was detected between the WMS 261-174-bp allele and the WMS 261-165-bp allele in the recombinant lines comparing 2D chromosomes of ‘Cappelle-Desprez’ and ‘Ciano 67’.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Key words Adaptability ; Dwarfing gene (Rht8) ; Microsatellite ; Molecular markers ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Wheat microsatellite WMS 261 whose 192-bp allele has been shown to be diagnostic for the commercially important dwarfing gene Rht8 was used to screen over 100 wheat varieties to determine the worldwide spread of Rht8. The results showed Rht8 to be widespread in southern European wheats and to be present in many central European wheats including the Russian varieties ‘Avrora’, ‘Bezostaya’ and ‘Kavkaz’. Rht8 appears to be of importance to South European wheats as alternative giberellic acid (GA)-insensitive dwarfing genes do not appear to be adapted to this environment. The very successful semi-dwarf varieties bred by CIMMYT, Mexico, for distribution worldwide have been thought to carry Rht8 combined with GA-insensitive dwarfing genes. Additional height reduction would have been obtained from pleiotropic effects of the photoperiod-response gene Ppd1 that is essential to the adaptability of varieties bred for growing under short-winter days in tropical and sub-tropical areas. The microsatellite analysis showed that CIMMYT wheats lack Rht8 and carry a WMS 261 allelic variant of 165 bp that has been associated with promoting height. This presumably has adaptive significance in partly counteracting the effects of other dwarfing genes and preventing the plants being too short. Most UK, German and French wheats carry an allelic variant at the WMS 261 locus with 174 bp. This could be selected because of linkage with the recessive photoperiod-sensitive ppd1 allele that is thought to offer adaptive significance northern European wheats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 89 (1996), S. 1-10 
    ISSN: 1573-5060
    Keywords: aneuploidy ; chromosome substitutions ; height ; wheat ; yellow rust
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The difficulties in developing inter-varietal chromosome substitution lines in wheat are reviewed. The use of genetical, cytological and molecular markers is suggested as a way of overcoming them. These difficulties and the use of markers, as well as the need to develop duplicate lines to detect background variation, are described using the development and analysis of the Cappelle-Desprez (Bezostaya 1) chromosome substitution set as an example. The effects of substituting Bezostaya 1 chromosomes on final plant height and adult-plant resistance to yellow rust are reported. The large number of aneuploids and substitution lines available in wheat provides a tremendous, international resource, which should be exploited in the future.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 89 (1996), S. 69-75 
    ISSN: 1573-5060
    Keywords: dwarfing genes ; gene mapping ; GA insensitivity ; rye ; Secale cereale ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The improvement of lodging resistance by introducing major dwarfing genes, classified either as GA insensitive or GA sensitive, is one of the main strategies chosen by cereal breeders. In the present paper the current knowledge about the genetics, chromosomal localisation and the homoeoallelic relationships of the dwarfing genes in wheat and rye is reviewed. The confusing system of the symbolisation of the GA insensitive dwarfing genes/alleles in wheat is discussed and a nomenclature based on rules for gene symbolisation in wheat is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...