Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 114 (1995), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The vast majority of the world's acreage of semi-dwarf wheat varieties is at present cultivated with varieties carrying one of two genetically similar dwarfing genes, Rht1 and Rht2, derived from the Japanese variety ‘Norin 10’. Near-isogenic lines have been developed and tested to determine the breeding potential of an allelic variant of Rht1, designated Rht1(B. dw).Following its introduction into four varietal backgrounds, Rht1 (B. dw) was seen to reduce height by around 25%, to increase the number of grains setting in spikelets and ears by around 20%, to reduce grain weight by 10%, and to increase yields of plants grown under spaced or drilled conditions by about 8%.When compared to the commercially utilized Rht1 allele, as near isogenic lines in a ‘Mercia’ varietal background, Rht1 (B. dw) gives a significantly greater reduction in plant height, a greater increase in spikelet and ear fertilities, slightly less reduction in 1000-grain weight, and significantly higher spikelet, ear and plot yields. If these results are repeatable in other varietal backgrounds, over seasons, and under differing environmental conditions, Rht1 (B. dw) should have considerable commercial potential as an alternative allele for producing shorter-than-average, high-yielding, semi-dwarf wheat varieties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Under field conditions in Germany over three growing seasons the pleiotropic effects on yield and its components of four sets of near isogenic lines carrying the GA insensitive dwarfing alleles Rht1, Rht2, Rht3, Rht1+2, Rht2+3 or rht (tall) in four different genetical backgrounds were examined together with 24 single chromosome recombinant lines segregating for the GA sensitive dwarfing gene Rht8 and the gene for day-length insensitivity Ppd1 in a ‘Cappelle-Desprez’ background. For the GA insensitive semi-dwarfs it was shown that in all three years a higher number of grains per ear was accompanied by a lower grain weight. Depending on the climatic conditions in a particular year, the increase in grain number was sufficient to compensate for the reduction in grain size and resulted in higher yields. For the Ppd1 allele yield advantages were found for wheats grown under environmental conditions of middle Europe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Resistance to Septoria nodorum was investigated in seedlings of an amphiploid generated from Triticum dicoccum Shübl. and Aegilops squarrosa Tausch, and in a series of substitution lines of single chromosomes from this synthetic hexaploid into Triticum aestivum cv. ‘Chinese Spring’ in three tests to determine the chromosomal location of resistance. From the Ae. squarrosa parent (D genome), chromosome 5D was found to confer a high level of resistance, reducing lesion cover to near that of the amphiploid in the three tests. Chromosomes 3D, and to a lesser extent, 7D were also found to confer significant resistance to the amphiploid. Three chromosomes, 2A, 3B and 5A, from the T. dicoccum parent (AB genomes) also conferred resistance but to a lesser extent than 7D. Two chromosomes, 2B and 2D, caused a significant decrease in resistance. ‘Chinese Spring’ may thus carry genes for resistance to S. nodorum on these chromosomes which are absent in the synthetic hexaploid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Lodging is a major constraint to increasing yield in many crops, but is of particular importance in the small-grained cereals. This study investigated the genetic control of lodging and component traits in wheat through the detection of underlying quantitative trait loci (QTL), The analysis was based on the identification of genomic regions which affect various traits related to lodging resistance in a population of 96-doubled haploid lines of the cross ‘Milan’בCatbird’, mapped using 126-microsatellite markers. Although major genes related to plant height (Rht genes) were responsible for increasing lodging resistance in this cross, several other traits independent of plant height were shown to be important such as fool and shoot traits, and various components of plant yield. Yield components such as grain number and weight were shown to be an indicator of plant susceptibility to lodging. QTL for lodging and associated traits were found on chromosomes IB, ID. 2B. 2D. 4B, 4D. 6D and 7D. QTL for yield and associated traits were identified on chromosomes IB, ID. 2A. 2B. 2D. 4D and 6A,
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: In hexaploid bread wheat, Triticum aestivum (2n = 6x = 42), little work has been carried out to study the genetic control of the synthesis of reduced, non-reduced and total non-structural carbohydrates and soluble proteins in aerial and rooting structures. The aim of this paper was to determine the chromosomal location of genes determining carbohydrate and protein synthesis that could be used for diagnostic selection in segregating breeding populations. A set of wheat intervarietal chromosome substitution lines [‘Chinese Spring’ (CS) × synthetic wheat (Triticum diccocoides×Aegilops squarrosa) (Syn)], was used. Plants were cultivated in hydroponic solutions to the fully expanded third leaf stage. Carbohydrate and protein contents and dry matter were determined for aerial and root parts. The root dry weight did not show significant differences between the parental varieties and the substitution lines, except for 5A, 2B and 6B, which had significantly lower dry weights. The aerial dry weight was significantly higher for Syn and the 2A substitution line. The ratio aerial dry weight/root dry weight was significantly higher in Syn, 1A, 2A and 4B. The protein content of the plant showed highly significant differences between both parental lines but 6A and 1D of the substitution lines showed highly significant differences, with contents as high as that for Syn. Syn produced significantly lower total aerial carbohydrates. The substitution lines 2A, 5A, 6A, 7A, 2B, 3D, 5D and 6D showed highly significant total carbohydrate content increases in the aerial parts compared with both parental lines. The non-reduced carbohydrate contents showed a pattern similar to that of the total carbohydrates. Syn had a lower reduced carbohydrate content than CS. Only the 5A, 2B, and 1D substitution lines had a highly significantly different content of reduced carbohydrates than CS. In roots, Syn produced the lowest values for every type of sugar. The highest significant values for total carbohydrates were found in substitution lines 2B, 4B, 5B, 6B, 1D and 6D. The non-reduced carbohydrate levels were significantly higher than CS in 2B, 5B, 6B and 6D substitution lines. Only the substitution lines 3B and 1D showed a significantly higher reduced carbohydrate content in roots compared with CS. The photoassimilate partitioning in Syn, 1 A, 2A and 4B favoured the aerial parts but, in contrast, higher partitioning to the roots was found in the 7B, 1D and 3D substitution lines. Both groups appear to carry interesting patterns worth incorporating in wheat cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 118 (1999), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Chromosome 3A of wheat is known to carry earliness per se genes. To determine the number of genes and their arm location, ear emergence time under a controlled environment was nvestigated using ditelosomic lines and homozygous recombinant substitution lines developed between chromosome 3A homologues from (Timstein) and (Chinese Spring) (CS) in a CS genetic background. Because the ear emergence distribution was discontinuous and two separate modes were produced, the 86 recombinant lines could be divided into 21 lines as the early ‘Timstein’3A type and 65 lines as the late CS type. This agrees with the 1:3 independent segregation of two genes both located on chromosome 3A. Therefore, two hypotheses can be proposed, either CS(‘Timstein’ 3A) carries two genes and both are necessary to give early ear emergence, or one gene for early ear emergence is present on (Timstein) 3A, but a suppressor is on CS 3A. The behaviour of ditelosomic 3AL and 3AS lines, with an ear emergence time identical to that of CS, suggested that one gene is located on the long arm and the other is on the short arm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: In order to identify chromosomes involved in resistance to Fusarium head blight, a set of 21 substitution lines of Triticum macha (resistant) chromosomes into ‘Hobbit’'sib’(susceptible) were evaluated in trials over 2 years. For the first year's trial, all plants were inoculated on the same day with a conidial suspension of F. culmorum. For the second trial, individual plants were inoculated precisely at mid anthesis of each plant over a period of 2 weeks. The disease level was assessed by visual scoring, relative ear weight and F. culmorumn-specfic quantitative polymerase chain reaction. The results showed that T. macha chromosomes 1B, 4A and 7A conferred good overall resistance, suggesting that they carry important genes for resistance. In two additional trials, T. macha and ‘Hobbit’'sib’ were evaluated for resistance to brown foot rot. The results showed that T. macha was more susceptible than ‘Hobbit’‘sib’, indicating that stem base disease response is not correlated with head blight resistance in these cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 116 (1997), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The reciprocal translocation 5BL-7BL and 5BS-7BS was widespread in West European wheats 30 years ago, and is probably present in many of their descendants today. In varieties with a history of durable adult-plant resistance to yellow rust and carrying this translocation, removal of the 5BS-7BS chromosome gave adult plants which were much more susceptible. It was suggested that this chromosome might therefore carry the gene(s) responsible for a major part of their resistance and possibly their durability. To test this, a series of lines was developed in which 5BS-7BS chromosomes from both resistant and susceptible varieties were substituted into a number of the durably resistant varieties. In every case, the substituted 5BS-7BS chromosome, irrespective of origin, was found to produce the resistant phenotype, indicating that background chromosomes were responsible for the differences between the varieties. The resistance and durability of the resistant varieties cannot therefore be due solely to the translocated chromosome. In similar experiments, the 5BS and 7BS arms from varieties not carrying the translocation were substituted into a variety carrying the translocation. In each instance, the lines with the substituted arms were much more susceptible than their recipient, confirming the major effect of the 5BS-7BS chromosome on resistance. The complete correlation between the translocation and resistance and between increased susceptibility and its absence suggests that the gene(s) for adult-plant resistance, located on the 5BS-7BS chromosome, may be closely linked to the break point. Alternatively, it may be a consequence of the close relatedness of some of the varieties. The presence of this gene(s) might be a factor explaining the prevalence of this translocation in some West European wheats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 113 (1994), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Rht12, a dominant dwarfing gene of wheat, was shown to be located distally on the long arm of chromosome 5A. Lack of recombination with the awn inhibitor B1 suggested that Rht12 is cither tightly linked to this gene or is, in this material, a pleiotropic expression of the gene. Linkage to β-Amy-A1 was also very tight, indicating that Rht12 is present on the segment of chromosome SAL ancestrally translocated from 4AL. The close linkage to β-Amy-A1 also suggests that Rht12 is not a homoeoallele of the commercially important GA-insensitive dwarfing genes.Analysis of near-isogenic lines in a number of genetic backgrounds showed that Rht12 reduces height without altering ear size and significantly increases spikelet fertility. However its successful utilization in breeding programmes will require careful selection since in some backgrounds the gene reduces grain numbers and grain size. In all backgrounds, Rht12 delayed ear emergence time by around 6 days. A delay of this magnitude could, in many environments, adversely affect yield if it is not neutralized by altering the balance of other genes determining ear emergence time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 121 (2002), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Moderate resistance to eyespot was first incorporated in the variety Cappelle-Desprez (CD). Later the gene Pch1, which could confer a higher level of resistance, was introduced from Aegilops ventricosa. However Pch1-carrying varieties can sustain significant eyespot-induced yield losses in severe attack situations. A strategy to further enhance the resistance of wheat is by pyramiding Pch1 and the genes for resistance in CD. The first requirement to achieve this is a better understanding of the genetics of resistance in CD. The resistance of the 21 Cappelle-Desprez (Bezostaya) disomic substitution lines was evaluated. Chromosome 7A was confirmed as carrying a major gene for resistance to eyespot at the seedling stage. However, this study demonstrates that this chromosome has no effects at the adult stage. Chromosome 5A was shown to carry a major gene for resistance to eyespot at the adult stage, which was stably expressed each year of testing. Chromosomes 1A and 2B had significant effects for only two years among four.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...