Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1990-1994  (3)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 75 (1994), S. 2393-2397 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: All the nine elastic constants of the orthorhombic crystal lithium hydrazinium sulfate, Li(N2H5)SO4, have been determined by measuring ultrasonic velocities using pulse echo overlap technique at 10 MHz. Temperature variation of all the six diagonal elastic constants and the three off-diagonal combinations have been measured between 300 and 450 K. Some of the constants show anomalous behavior in the 410–440 K temperature region, which is attributed to a phase transition in the crystal near 425 K. Magnitude of the velocity anomaly is comparatively small. A new high-temperature ultrasonic bond material suitable for transverse waves is also reported.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Applied crystallography online 24 (1991), S. 1015-1022 
    ISSN: 1600-5767
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: X-ray diffraction studies are made on proton conducting polar lithium hydrazinium sulfate and ferroelectric lithium ammonium sulfate. The X-ray rocking curves recorded with in situ electric field along the polar b axis of lithium hydrazinium sulfate (direction of proton conductivity) show a strong enhancement of the 0k0 diffraction intensity. The corresponding 0k0 X-ray topographs reveal extinction contrast consisting of striations parallel to the polar axis. They disappear when the electric field is switched off. The effect is very strong in 0k0 but invisible in h0l reflections. It is present only if the electric field is parallel to the polar axis b. This unusual X-ray topographic contrast is correlated with the proton conduction. It is supposed that, under electric field, an inhomogeneous charge distribution develops, distorting the crystal lattice. Similar experiments on lithium ammonium sulfate also show contrast variations, but of quite different behaviour than before. In this case they result from changes of the ferroelectric domain configuration under electric field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Applied crystallography online 25 (1992), S. 274-280 
    ISSN: 1600-5767
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: X-ray diffraction studies are made on ion-conducting potassium titanyl phosphate (KTP) crystals with in situ DC electric field along different crystallographic directions. The X-ray rocking curves recorded with an electric field along the polar b axis (which is the direction of ion conduction) show a strong enhancement of the 040 reflection intensity (reflecting planes normal to the b axis) whereas the h0l reflections (reflecting planes parallel to the polar axis) do not show any intensity change. For an electric field normal to the polar axis no intensity change, either in 040 or in h0l reflections, occurs. This observation is supplemented by X-ray topography. The 040 X-ray topographs recorded with in situ electric field along b exhibit strong extinction contrast in the form of striations parallel to the polar (ion-conduction) axis. The 040 intensity increase and the striation contrast are attributed to lattice deformation by the space-charge polarization due to the movement of the K+ ions under the influence of the electric field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...