Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1985-1989  (3)
  • Nitrogen nutrition and photosynthesis  (1)
  • Growth rate
  • Quantum yield
  • photoinhibition
  • 1
    ISSN: 1432-2048
    Keywords: Nitrogen nutrition and photosynthesis ; Photoinhibition of photosynthesis ; Photosynthesis (acclimation) ; Solanum (photosynthetic acclimation)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have compared the ability of shadegrown clones of Solamum dulcamara L. from shade and sun habitats to acclimate to bright light, as a function of nitrogen nutrition before and after transfer to bright light. Leaves of S. dulcamara grown in the shade with 0.6 mM NO 3 - have similar photosynthetic properties as leaves of plants grown with 12.0 mM NO 3 - . When transferred to bright light for 1–2 d the leaves of these plants show substantial photoinhibition which is characterized by about 50% decrease in apparent quantum yield and a reduction in the rate of photosynthesis in air at light saturation. Photoinhibition of leaf photosynthesis is associated with reduction in the variable component of low-temperature fluorescence emission, and with loss of in-vitro electron transport, especially of photosystem II-dependent processes. We find no evidence for ecotypic differentiation in the potential for photosynthetic acclimation among shade and sun clones of S. dulcamara, or of differentiation with respect to nitrogen requirements for acclimation. Recovery from photoinhibition and subsequent acclimation of photosynthesis to bright light only occurs in leaves of plants provided with 12.0 mM NO 3 - . In these, apparent quantum yield is fully restored after 14 d, and photosynthetic acclimation is shown by an increase in light-saturated photosynthesis in air, of light-and CO2-saturated photosynthesis, and of the initial slope of the CO2-response curve. The latter changes are highly correlated with changes in ribulose-bisphosphate-carboxylase activity in vitro. Plants supplied with 0.6 mM NO 3 - show incomplete recovery of apparent quantum yield after 14 d, but CO2-dependent leaf photosynthetic parameters return to control levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Photoinhibition ; Crassulacean acid metabolism (CAM) ; 77K fluorescence ; Quantum yield ; Stress physiology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Diurnal measurements of low temperature (77K) fluorescence at 690 nm (PS II) from north, south, east, and west facing cladode surfaces of Opuntia basilaris in Death Valley, California were made on six occasions during 1985. The absolute levels of F o(instantaneous fluorescence) and F m(maximum fluorescence), as well as the ratio F v/F m(variable fluorescence, F m-F o, over maximum fluorescence), were greater in the north face relative to the other faces. Diurnal decreases in F o, F mand F v/F mwere found concomitant with increases in incident photon flux area density (PFD). F v/F mwas fairly low throughout the year, indicative of photoinhibition, but became somewhat elevated after a spring rain. In early fall the quantum yield of the south face was considerably depressed relative to that of the north face, and corresponding differences were observed in F v/F m. A decrease in PFD during growth of glasshouse plants led to an increase in chlorophyll concentration, F oand F m, but not F v/F m. Although there was some variability in the quantum yield of well watered glasshouse cladodes, a correlation was found between quantum yield and the light and CO2 saturated rate of photosynthesis. When O. basilaris was water stressed under glasshouse conditions, reductions in quantum yield, F m, and F v/F mwere observed. Reductions in F v/F malways indicated a reduced quantum yield, although the converse was not necessarily so in well watered glasshouse plants. The results of this study indicate that O. basilaris is likely to experience photoinhibition throughout much of its life in Death Valley.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; herbicide binding ; photoinhibition ; photosynthesis ; photosystem II ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The time courses of some Photosystem II (PS II) parameters have been monitored during in-vivo and in-vitro photoinhibition of spinach chloroplasts, at room temperature and at 10 °C or 0 °C. Exposing leaf discs of low-light grown spinach at 25 °C to high light led to photoinhibition of chloroplasts in-vivo as manifested by a parallel decrease in the number of functional PS II centres, the variable chlorophyll fluorescence at 77K (F v /F m ), and the number of atrazine-binding sites. When the photoinhibitory treatment was given at 10 °C, the former two parameters declined in parallel but the loss of atrazine-binding sites occurred more slowly and to a lesser extent. During in-vitro photoinhibition of chloroplast thylakoids at 25 °C, the loss of functional PS II centres proceeded slightly more rapidly than the loss of atrazine-binding sites, and this difference in rate was further increased when the thylakoids were photoinhibited at 0 °C. During the recovery phase of leaf discs (up to 9 h) the increases in F v /F m preceded that of the number of functional PS II centres, while only a further decline in the number of atrazine-binding sites was observed. The recovery of variable chlorophyll fluorescence and the concentration of functional PS II centres occurred more rapidly at 25 °C than at 10 °C. These results suggest that the photoinhibition of PS II function is a relatively temperature-independent early photochemical event, whereas the changes in the concentration of herbicide-binding sites appear to be a more complex biochemical process which can occur with a delayed time course.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...