Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (15)
  • Tetanus toxin  (14)
  • Acetylcholine  (3)
Source
  • Articles: DFG German National Licenses  (15)
Material
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 52 (1974), S. 255-265 
    ISSN: 1432-1440
    Keywords: Tetanus toxin ; Antitoxin ; 125Iodine ; Spinal cord ; Nerves ; Tetanustoxin ; Antitoxin ; 125Jod ; Rückenmark ; Nerven
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Unsere Kenntnis der Pathogenese des Wundstarrkrampfes hat sich durch Anwendung neuer biochemischer und neurophysiologischer Techniken innerhalb der letzten Jahre erheblich erweitert. Radioaktiv markiertes Tetanustoxin wurde innerhalb verschiedener Nerven bis zu den Vorderhörnern des Rückenmarks verfolgt; dort wurde das Toxin z.T. noch auf cellulärer Ebene nachgewiesen. Die Verteilung des Toxins ist zeitabhängig und wird durch Antitoxin beeinflußt. Je weiter der Zeitpunkt der Vergiftung zurückliegt, desto geringer ist der Effekt des Antitoxins auf die Symptomatologie und die spinale Anreicherung des Toxins. Die neurale Wanderung des Toxins wird durch Erregung des toxinhaltigen Nerven gefördert. Neben den motorischen Anteilen sind auch rein sensibel-sensorische und vegetative Nerven zur Weiterleitung des Toxins imstande. Der generalisierte Tetanus kann als eine Sonderform des lokalen Tetanus betrachtet werden. Während bisher das klassische α-motorische System des Rückenmarks im Vordergrund der Untersuchungen stand, weisen neuere Arbeiten auf eine gleichzeitige, vielleicht sogar vorwiegende Enthemmung des γ-motorischen Systems hin. Außerdem werden vegetative Spinalreflexe enthemmt, was auch bei der Therapie bedacht werden sollte. Die Hemmwirkung des Tetanustoxins auf periphere Synapsen weist auf große Ähnlichkeiten mit Botulinumtoxin hin, obwohl die Symptome am vergifteten Tier so verschieden sind. Künftige Untersuchungen werden sich voraussichtlich mit der Wirkungsweise des Toxins auf molekularer und cellulärer Ebene befassen.
    Notes: Summary Due to the use of advanced biochemical and neurophysiological techniques, our knowledge of the pathogenesis of tetanus has considerably improved during the past years. Radio-labelled tetanus toxin has been traced within different nerves up to the anterior horn of the spinal cord where its localization down to the cellular level has been achieved. The distribution of labelled toxin depends on time and is influenced by antitoxin. The longer the duration of poisoning, the smaller the effect of antitoxin on the spinal enrichment of toxin and on the onset of toxic symptoms. The neural ascent of toxin into a spinal cord segment is enhanced by stimulation of the segmental nerves. Not only the motor nerves, but also sensory and vegetative nerves are able to serve as guide-rails for the toxin. The generalized tetanus has been understood as a special kind of local tetanus. For a long time, disinhibition of the alpha motor system was considered to be the characteristic action of tetanus toxin, but recent evidence is in favour of an additional disinhibition of the gamma motor system (perhaps even preceding the alpha disinhibition) and also of the sympathetic spinal reflexes. This finding should have therapeutic implications. The detection of inhibitory effects of tetanus toxin on peripheral cholinergic synapses points again to the close similarity between tetanus toxin and botulinum A toxin. The trends of future research will presumably lead to the elementary processes at the molecular and cellular level which are the basis of the clinical picture of tetanus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 346 (1992), S. 358-361 
    ISSN: 1432-1912
    Keywords: Chromaffin cell ; [3H]-Noradrenaline release ; Tetanus toxin ; Protease inhibitors ; Metalloproteinase ; Zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The light chain of tetanus toxin is known to inhibit the Ca2+-evoked release of [3H]-noradrenaline from digitonin-permeabilized bovine adrenomedullary cells in culture but does not change the basal outflow or the total cellular radioactivity. Evidence for the involvement of proteolysis in this effect was obtained by three approaches. First, the permeabilized cells were exposed to a series of enzymes. The endoproteinase Glu-C mimicked the inhibition produced by the light chain. Second, protease inhibitors of different specificities were assessed for blockade of the action of light chain on [3H]-noradrenaline release from permeabilized cells. Blockade was complete with EDTA (2.5 mmol/1) or 1,10-o-phenanthroline (1 mmol/1), and absent with the highest concentrations tested of diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, pepstatin, leupeptin, bestatin, phosphoramidon, thiorphan or trans-epoxysuccinic acid (E64) which is regarded as an inhibitor of thiol proteases. This inhibitor spectrum suggested that light chain might be a metalloprotease. Finally a sequence-His-Glu-Leu-x-Hisoccurring in the light chains of tetanus toxin and of the botulinum neurotoxins A, C, D, E was also found in many endoproteinases and an aminopeptidase. The motif is known to constitute their active site and to bind Zn2+. In fact Zn2+. (0.6–0.9 mol/mol) was found in thoroughly dialysed two-chain tetanus toxin. The three approaches jointly support the hypothesis that the light chain of tetanus toxin, and probably of all clostridial neurotoxins, inhibits [3H]-noradrenaline release from adrenomedullary cells by degradation of (a) specific, still unknown protein(s) involved in exocytosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 316 (1981), S. 143-148 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum toxin ; Acetylcholine ; Calcium ; Brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Slices or particles from rat forebrain cortex were preloaded with [3H]choline, and the release of [3H]acetylcholine was evoked with potassium ions in a superfusion system. Release depended on the presence of calcium. 1. Incubation of the preloaded tissue preparation for 2 h with tetanus or botulinum A toxin did not change the [3H]acetylcholine content or the ratio [3H]acetylcholine/[3H]choline. Tetanus toxin diminished, dependent on dose and time, the release of [3H]acetylcholine evoked by 25 mM K+. It was about ten times more potent than botulinum A toxin. The effect of botulinum toxin was due to its neurotoxin content. Raising the potassium concentration partially overcame the inhibition by the toxins. Hemicholinium-3, applied to preloaded slices, left the subsequent [3H]acetylcholine release unchanged. Pretreatment of particles with neuraminidase diminished the content of long-chain gangliosides to the detection limit. Such particles remained fully sensitive to tetanus toxin, and at least partially sensitive to botulinum A toxin. 2. The potassium or sea anemone toxin II stimulated uptake of 45Ca2+ into cortex synaptosomes or particles was not inhibited by either toxin. Both toxins appear to impede the Ca2+-dependent mobilization of an easily releasable acetylcholine pool, without inhibiting the transmembranal calcium fluxes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum A toxin ; Neurotransmitter ; Uptake ; Release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of tetanus toxin and botulinum A toxin on the uptake and evoked release of various neurotransmitters were studied using particles from rat forebrain, corpus striatum and spinal cord. 1. Uptake. Tetanus toxin partially inhibits the uptake of glycine and choline into spinal cord synaptosomes. The effect on glycine uptake becomes statistically significant after a lag period of 60\2-120 min. It is no longer present when the toxin is heated, antitoxin-treated or toxoided. The inhibition by botulinum A toxin of choline uptake into spinal cord synaptosomes is weak but measurable, that of glycine uptake is at the borderline of detection. The uptake of GABA into forebrain cortex synaptosomes is slightly inhibited by tetanus toxin but hardly by botulinum A toxin. The effects of tetanus toxin and botulinum A toxin on the uptake of noradrenaline into striatal synaptosomes are negligible. 2. Release. Tetanus toxin inhibits the potassium (25 mM) evoked release of radioactivity from rat forebrain cortex particles preloaded with labelled neurotransmitters. The sensitivity decreases in the following order: Glycine 〉 GABA \2〉 acetylcholine. The toxin also inhibits the release of radioactivity from striatal particles preloaded with labelled noradrenaline. It is always 10\2-50 times more potent on spinal cord than on brain particles. The sensitivity of the evoked release from the spinal cord decreases in the order glycine 〉 GABA 〉 acetylcholine 〉 noradrenaline. The toxin is identical with the causative agent because toxin-antitoxin complexes, toxoid and heated toxin do not influence the release from particles preloaded with glycine (spinal cord), GABA (forebrain) and noradrenaline (striatum). Botulinum toxin resembles tetanus toxin by its ability to diminish the release of radioactivity from preloaded forebrain (acetylcholine 〉 GABA), striatal (noradrenaline), or spinal cord (glycine) particles. The botulinum toxin effect on the striatum (noradrenaline) and on the spinal cord (glycine) is due to its neurotoxin content. The identity of the toxin and the causative agent has been established by preheating and preincubation with antitoxin. It is proposed that a) tetanus and, however to a much lesser degree, botulinum A toxin act in a basically similar manner on a process underlying the function of synapses in general, and b) the pronounced sensitivity of glycine and GABA release from spinal cord, together with the axonal ascent of tetanus toxin, may be crucial in the pathogenesis of tetanus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 345 (1992), S. 227-234 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum neurotoxin A ; Reduction ; Thioredoxin ; Thioredoxin reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Inhibition of neurotransmitter release by tetanus toxin and botulinum neurotoxin A can be mimicked by intracellular application of the corresponding toxin light chains. The aim of this study was to determine whether the two-chain toxins are reduced by brain preparations to yield free light chains which would represent the ultimate toxins. The interchain disulfide of two-chain tetanus toxin was cleaved by rat cortex homogenate fortified with NADPH. Reduction was promoted further by addition of thioredoxin. Thioredoxin reductase was demonstrated in and purified from porcine brain cortex. The thioredoxin system which consisted of purified enzyme, thioredoxin and NADPH reduced both toxins. The resulting light chains appeared homogeneous in SDS gel electrophoresis. The complementary heavy chain of tetanus but not of botulinum toxin migrated in two bands, the faster one with the velocity of heavy chain obtained by chemical reduction. The major, slower form was converted into the faster by chemical but not by enzymatic reduction. Tetanus toxin, whether in its single-chain or two-chain version also occurred in two forms which differed by their electrophoretic mobility. The two forms of single-chain toxin were interconverted by chemical reduction or oxidation but not by the thioredoxin system. It is concluded that a) a thioredoxin system in brain tissue reduces the interchain disulfide of two-chain tetanus toxin and botulinum neurotoxin A, b) tetanus toxin but not botulinum neurotoxin A consists of two electrophoretically distinct forms which differ by the thiol-disulfide status of their heavy chains, c) the disulfide loop within the heavy chain of tetanus toxin is resistant to the thioredoxin system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...