Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (4)
  • Acid rain  (2)
  • Soil microflora  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 80 (1989), S. 405-413 
    ISSN: 1432-1939
    Keywords: Elaterid larvae ; Beech litter decomposition ; Soil microflora ; Carbon turnover ; Lime amelioration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Data are presented on the influence of Athous subfuscus larvae (Coleoptera, Elateridae) on the microbial carbon cycle in the biotically most active horizons of three contrasting beech forest soils: the Ah horizon of a mull soil on limestone (Göttinger Wald, FRG), the F/H horizon of a moder soil on new red sandstone (Solling area, FRG) and in the F/H horizon of a lime ameliorated area close to the second site. Gut content analyses demonstrated that the larvae of A. subfuscus are humiphagous and that this unspecific feeding behaviour is widely independent of soil conditions. Differences in 14C incorporation demonstrated that only the larvae in the F/H horizon of the limed moder soil directly affected primary decomposer organisms. However, the burrowing activity of the larvae in the topsoil indirectly modified the time course of beech leaf-litter decomposition in the litter layer of all three soils. The microflora of the mull soil contained 2.6%, that of the moder soil 0.7% and that of the limed moder soil 2.2% of total C. The metabolic quotient (qCO2, 10°C) of the soil microflora was 0.0010 (mgCO2-C·mg-1 biomass-C·h-1) in the mull soil, 0.0034 in the moder soil and 0.0012 in the limed moder soil. The A. subfuscus larvae generally reduced the size of the microbial C pool (〈-30%) and increased the metabolic quotient of the microflora (〉+50%). Considering these soil-independent effects of A. subfuscus on the C turnover of the soil microflora, the burrowing activity of humiphagous soil arthropods may generally increase nutrient availability to primary producers. The results of this study reveal that some of the micro- and mesoscale effects of humiphagous arthropods on the microbial carbon turnover in beech forest soils are surprisingly similar, even under very different soil conditions. The long-term modification of the time course of leaf litter decomposition, in contrast, indicates that the influence of humiphagous arthropods on the formation of the humus layer is soil-specific. There are profound differences in the role of humiphagous arthropods in limed moder soils and in naturally base-rich soils. It is concluded that liming increases competition within the microfloral population due to accelerated humification. The negative effect of A. subfuscus on 14C mineralization in the limed substrate could thus be explained by its effects on a microflora that was strongly limited by the availability of carbon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 31 (2000), S. 1-19 
    ISSN: 1432-0789
    Keywords: Key words Soil organic matter ; Soil macrofauna ; Faeces ; Soil microflora ; Carbon mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The control of soil organic matter (SOM) stability by soil invertebrates is evaluated in terms of their impact on the inherent recalcitrance, accessibility to microorganisms, and interaction with stabilizing substances of organic compounds. Present knowledge on internal (ingestion and associated transformations) and external (defecation, constructions) control mechanisms of soil invertebrates is also reviewed. Soil animals contribute to the stabilization and destabilization of SOM by simultaneously affecting chemical, physical, and microbial processes over several orders of magnitude. A very important aspect of this is that invertebrates at higher trophic levels create feedback mechanisms that modify the spatio-temporal framework in which the micro-food web affects SOM stability. Quantification of non-trophic and indirect effects is thus essential in order to understand the long-term effects of soil biota on SOM turnover. It is hypothesized that the activities of invertebrates which lead to an increase in SOM stability partly evolved as an adaptation to the need for increasing the suitability of their soil habitat. Several gaps in knowledge are identified: food selection and associated changes in C pools, differential effects on SOM turnover, specific associations with microorganisms, effects on dissolution and desorption reactions, humus-forming and humus-degrading processes in gut and faeces, and the modification of invertebrate effects by environmental variables. Future studies must not be confined merely to a mechanistic analysis of invertebrate control of SOM stability, but also pay considerable attention to the functional and evolutionary aspects of animal diversity in soil. This alone will allow an integration of biological expertise in order to develop new strategies of soil management which can be applied under a variety of environmental conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 151-156 
    ISSN: 1432-0789
    Keywords: Acid rain ; Mesofauna ; Decomposition ; Beech forest ; Calcareous soil ; Litterbag ; 14C-labelled beech leaf litter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of simulated acid rain on litter decomposition in a calcareous soil (pHH 2 O 5.8) were studied. Litterbags (45 μm and 1 mm mesh size) containing freshly fallen beech leaf litter were exposed to different concentrations of acid in a beech forest on limestone (Göttinger Wald. Germany) for 1 year. Loss of C, the ash content, and CO2−C production were measured at the end of the experiment. Further tests measured the ability of the litter-colonizing microflora to metabolize 14C-labelled beech leaf litter and hyphae. The simulated acid rain strongly reduced CO2−C and 14CO2−C production in the litter. This depression in production was very strong when the input of protons was 1.5 times greater than the normal acid deposition, but comparatively low when the input was 32 times greater. acid deposition may thus cause a very strong accumulation of primary and secondary C compounds in the litter layer of base-rich soils, even with a moderate increase in proton input. The presence of mesofauna significantly reduced the ability of the acid rain to inhibit C mineralization. The ash content to the 1-mm litterbags indicated that this was largely due to transport of base-rich mineral soil into the litter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 285-289 
    ISSN: 1432-0789
    Keywords: Acid rain ; Soil fauna ; Litter decomposition ; Litter fragmentation ; Bioturbation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of simulated acid rain on the decomposition of C-14-labelled beech leaf litter (4 months old), and the modification of this effect by litter fragmentation by the millipede Glomeris marginata (Villers) and by the burrowing activity of two earthworm species [Lumbricus castaneus (Savigny) and Octolasion lacteum (Örley)], was studied in laboratory experiments over a period of 168 days. The acid rain caused a strong decrease in C mineralization of intact beech leaf litter situated on the surface of the carbonate-rich mineral soil (to 0.43 of control), whereas CO2 production by the systems was increased (up to 1.12 times the control level). In general, the activity of the decomposer macrofauna buffered the effects of the acidity. Litter fragmentation by G. marginata reduced the effect of acid precipitation on litter decomposition by almost 50%. The burrowing activity of L. castaneus and O. lacteum led to contact between the intact leaf litter and the mineral soil, which buffered the effect of the acid precipitation on litter decomposition by 82% and 65%, respectively. The epigeic earthworm species L. castaneus, by feeding on and removing the faecal pellets of G. marginata from the soil surface, almost totally buffered the effect of the acid rain on pellet decomposition. The activity of the endogeic earthworm species O. lacteum in feeding on Glomeris faecal pellets and mixing them with mineral soil also buffered the effect of the acid rain. However, this effect appeared to be restricted to the first 5 weeks. In total, by mixing fragmented litter with mineral soil, O. lacteum stabilized organic matter in the mineral soil horizon. This stabilization effect was assumed to be independent of the simulated acid precipitation. In addition, the activity of O. lacteum compensated for the increased CO2 production induced by the acid rain. An intact soil faunal community is therefore considered to be a key component in the buffering characteristic of beechwood mull soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...