Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Carbachol  (1)
  • Life and Medical Sciences  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Rat ; Parotid glands ; Salivary glands ; Calcein ; Amylase ; Secretion ; Carbachol ; Noradrenalin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Effects of cholinergic and adrenergic agonists on the secretion of the fluorescent dye calcein were examined to clarify the involvement of calcium ions in the secretion of calcein from acinar cells dispersed from the rat parotid gland. Addition of carbachol (CCh) and noradrenalin (NA), but not isoproterenol (IPR), enhanced the net release of calcein from acinar cells during the subsequent 10 min in a dose range from 10−8 M to 10−6 M. The net release of calcein reached a maximum 7 min after the addition of CCh. The release of calcein was suppressed by the simultaneous additions of atropine with CCh, or phenoxybenzamine with NA. Addition of CCh induced a sustained dosedependent increase in the intracellular levels of calcium ions, ([Ca2+]i). Addition of NA at 10−6 M increased [Ca2+]i. Phenoxybenzamine completely inhibited the NA-induced increase, but propranolol did not. The removal of extracellular calcium ions did not influence the release of calcein induced by 10−6 M CCh, but it abolished the sustained increase in [Ca2+]i. The transient increase in [Ca2+]i induced by CCh was observed in the absence of extracellular calcium ions. A calcium ion chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) inhibited the CCh-induced release of calcein. The calcium ionophore, A23187 (2.5×10−6 M), but not 10−3 M dibutyryl cAMP, evoked the release of calcein. It also increased [Ca2+]i. Removal of extracellular calcium ions suppressed the A23187-induced release of calcein. These results suggest that the release of calcein from parotid acinar cells is transiently induced through an increase in [Ca2+]i by muscarinic and α-adrenergic agonists and may represent the initial process of salivary secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 134 (1988), S. 155-160 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microinjection of rat brain mRNA in Xenopus oocytes induced acetylcholine, neuroteisin, serotonin, and glutamate receptors in the cells. These receptors stimulate an intracellular reaction pathway, including G-protein activation, inositol trisphosphate (IP3) formation, and Ca2+-dependent CI- channels. In the present study, we examined the roles of several protein kinases in these responses by means of inhibitors and activators of these kinases. Isoquinolinesulfonamides, inhibitors of protein kinases, caused no current responses and affected no receptor-mediated responses when injected into the oocytes at low doses (30-50 pmol), which inhibit cyclic nucleotide-dependent kinases or kinase C specifically, but abolished the receptor-mediated responses at a higher dose (300 pmol), which inhibit most protein kinases nonspecifically. Calmodulin inhibitors blocked the receptor-mediated responses strongly. Activation of cyclic nucleotide-dependent kinases or kinase C by injection of cAMP (or cGMP) or perfusion with phorbol esters caused no direct current responses but suppressed receptor-mediated responses. Current responses triggered by IP3 injection were not suppressed by these treatments. These results suggest that cAMP- (or cGMP-)dependent kinases or kinase C may not be involved in the pathway directly but may modulate it by inhibiting the initial part of the pathway (receptors, G-proteins, and/or phospholipase C), and they suggest that calmodulin may most likely be involved in the activation of Ca2+-dependent CI- channels.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...