Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 84 (1949), S. 123-144 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 107 (1960), S. 141-161 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 338-348 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We report here the effects of growth conditions and myogenic differentiation on rat myoblast hexose transport activities. We have previously shown that in undifferentiated myoblasts the preferred substrates for the high (HAHT)- and low (LAHT)-affinity hexose transport systems are 2-deoxyglucose (2-DG) and 3-O-methyl-D-glucose (3-OMG), respectively. The present study shows that at cell density higher than 4.4 × 104 cells/cm2, the activities of both transport processes decrease with increasing cell densities of the undifferentiated myoblasts. Since the transport affinities are not altered, the observed decrease is compatible with the notion that the number of functional hexose transporters may be decreased in the plasma membrane. Myogenic differentiation is found to alter the 2-DG, but not the 3-OMG, transport affinity. The Km values of 2-DG uptake are elevated upon the onset of fusion and are directly proportional to the extent of fusion. This relationship between myogenesis and hexose transport is further explored by using cultures impaired in myogenesis. Treatment of cells with 5-bromo-2′-deoxyuridine abolishes not only myogenesis but also the myogenesis-induced change in 2-DG transport affinity. Similarly, alteration in 2-DG transport affinity cannot be observed in a myogenesis-defective mutant, D1. However, under myogenesis-permissive condition, the myogenesis of this mutant is also accompanied by changes in its 2-DG transport affinity. The myotube 2-DG transport system also differs from its myoblast counterpart in its response to sulfhydryl reagents and in its turnover rate. It may be surmised from the above observations that myogenesis results in the alteration of the turnover rate or in the modification of the 2-DG transport system. Although glucose starvation has no effect on myogenesis, it is found to alter the substrate specificity and transport capacity of HAHT. In conclusion, the present study shows that hexose transport in rat myoblasts is very sensitive to the growth conditions and the stages of differentiation of the cultures. This may explain why different hexose transport properties have been observed with myoblasts grown under different conditions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 45 (1991), S. 82-92 
    ISSN: 0730-2312
    Keywords: cell cycle kinetics ; nicotinamide nucleotides ; glutathione ; mitogen responsiveness ; cation mobilization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human gingival fibroblast cultures were used to investigate the role of cellular thiol redox status in the mitogenic response. Increases in intracellular Ca2+ and cell cycle progression beyond G1 were followed as parameters of cellular mitogen-induced responses. Ethionine provided a G1 stage synchronization and altered the cellular redox poise as measured by the ratio NAD(P)H/NAD(P)+. Cultures harvested immediately after the 6 day ethionine low-serum synchronization showed a significant oxidation of their redox poise. Synchronized cultures, which were also glutathione (GSH) depleted, still showed an oxidized redox poise and significantly reduced GSH levels following a 24 hr incubation in drug-free, rich medium. Cellular reduced nicotinamide nucleotide levels correlated strongly (r = 0.995) with capacity to mobilize intracellular Ca2+ in response to basic fibroblast growth factor (bFGF). The sustained mitogenic response, as determined by cell cycle progression beyond G1, was also found to be interrelated with the cellular thiol redox status. Following a 24 hr recovery incubation in serum-rich medium, formerly synchronized cultures showed a rebound of their redox poise to a more reduced state and significant cell cycle progression beyond G1. In contrast, synchronized, GSH-depleted cultures did not progress and showed population distributions similar to those of cultures harvested immediately postsynchronization. Upon recovery of cellular GSH and reduced nicotinamide nucleotide levels, formerly GSH-depleted, growth-arrested cultures resumed cell cycle progression. The results suggest that the cellular response to specific mitogens is interrelated with the cellular thiol redox status. Cells that posses a thiol redox status below a threshold response point may have compromised Ca2+ sequestration and/or mobilization and therefore may be incapable of initiating the mitogen induced response cascade that culminates in cell cycle progression.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 61 (1937), S. 63-94 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Additional Material: 44 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 121 (1955), S. 801-829 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 222 (1988), S. 333-339 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Individual mitochondria were reconstructed from ultrathin serial sections of selected muscle fibers in the M. semitendinosus of a horse, over a length of nearly two sarcomeres. Mitochondria were found to be highly variable, with size and complexity of single mitochondria increasing with the fractional part of a fiber occupied by mitochondria. In fibers with a mitochondrial volume density of less than 4%, corresponding to the mitochondrial content of fast-twitch glycolytic fibers, mitochondria were generally rather simple cylindrical shapes, oriented parallel to the myofibrils. In fibers with a mitochondrial volume density of more than 7%, corresponding to the mitochondrial content of slow-oxidative or fast-oxidative glycolytic fibers, mitochondria were generally cylindrical at the A-band and Z-plate level of the muscle sarcomeres. However, these mitochondria often had transverse extensions or interconnections that occurred at the I-band level. Volumes of individual mitochondria ranged from as small as a few thousandths of a μm3 up to several μm3 for the incompletely reconstructed portions of the largest mitochondria. Mitochondrial profiles that one would classify from single sections as subsarcolemmal were found to interconnect with other profiles deeper within the fiber. This suggests that it is unlikely that subsarcolemmal and interfibrillar mitochondria are two structurally distinct populations. However, we found no evidence of a reticulum completely interlinking all mitochondrial material in a muscle fiber.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 231 (1991), S. 48-62 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The renal cortex of tapirs, water-loving primordial ungulates, was continuous, nonlobed, and about 80% of renal mass in adult and 71% in term-neonate. In the neonates even the peripheral glomeruli were moderately mature. Tapirus bairdi had about 4 million glomeruli per kidney and T. pinchaque about 3 million smaller glomeruli. Number of glomeruli per gm of cortex was 12,444 in T. bairdi and 13,400 in T. pinchaque. Cortical loops were common in the medullary rays.The medulla was the simple crest-type. The terminal collecting ducts (T.C.D.) opened separately at the crest and not into a tubus maximus. The “outer stripe” of the outer medulla apparently was telescoped into the deep cortex. The medullary loops turned at a thick portion and at nearly all levels of the medulla. The medullary crest was lined by urothelium which extended into the ends of the T.C.D. Otherwise the T.C.D. were made of columnar epithelium.The pelvic urothelium was continuous with that of the medullary crest at the dorsal and ventral fornices. The fornices were well within the inner medulla. Hence only inner medulla could be exposed to pelvic urine.The hilar arteries, unlike the other two perissodactyl families (rhinoceri and equids), passed through the cortico-medullary (C-M) border and some large arteries and veins passed through the outer medulla to and from the C-M border without branches or tributaries. Unlike kidneys with a medullary crest in diverse eutherian mammals, tapirs lacked pelvic extensions along the major intrarenal blood vessels and thus lacked pelvic intervascular eminences.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: nucleotides ; cell cycle ; redox state ; energy charge ; cytoprotection ; extracellular matrix ; adhesion molecules ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During angiogenesis, formerly differentiated human microvascular endothelial cells (HMECs) return to a proliferative growth state. Many fundamental questions regarding HMEC function, such as how HMECs adapt to changes in bioenergetic requirements upon return to proliferative growth, remained unanswered. In this study, we evaluated whether modifications in HMEC bioenergetic profiles and glutathione (GSH) levels accompanied the cellular transition between differentiated and proliferative growth. To provide insight into the continuum of cellular adaptations that occur during this transition, we used a method recently developed in our laboratory that induces a state of morphological and functional predifferentiation in HMECs. Cellular morphology, in conjunction with flow cytometric DNA analyses and HMEC functional assays (the directed migration and intercellular association involved in microtubule formation) were employed to validate the HMEC culture state of growth. Analysis of the HPLC nucleotide profiles disclosed several findings common to all culture growth states. These uniform findings, e.g., cellular energy charges 〉 0.90, and highly reduced redox states, revealed that cultured HMECs maintain high rates of oxidative metabolism. However, there were also significant, culture growth state related differences in the nucleotide profiles. Proliferative HMECs were shown to possess significantly higher (relative to both large vessel endothelial cells, and differentiated HMECs) levels of GSH and specific nucleotides which were related with a return to the active cell cycle-ATP, GTP, UTP, and CTP, and NADPH. Further, the nucleotide profiles and GSH levels of the predifferentiated HMECs were determined to be intermediate between levels obtained for the proliferative and differentiated HMECs. The results of this study demonstrate that the capacity to modulate their cellular bioenergetic status during growth state transitions is one of the adaptations that enable HMECs to retain a growth state reciprocity. In addition, our findings also show that HMECs, especially during the proliferative growth state, are biochemically distinct from endothelial cells harvested from large vessels, and therefore suggest that HMECs are the cells of choice to employ when studying diseases that affect the human microvasculature.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...