Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Exercise ; Heart ; Mitochondria ; Oxygen uptake ; Respiration ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The relationship between maximal oxygen consumption rate ( $$\dot V{\text{O}}_{{\text{2max}}}$$ ) and mitochondrial content of skeletal muscles was examined in horses and steers (n=3 each). Samples of the heart left ventricle, diaphragm,m. vastus medialis, m. semitendinosus, m. cutaneous thoracicus andm. masseter, as well as samples of muscles collected in a whole-body sampling procedure, were analyzed by electron microscopy. $$\dot V{\text{O}}_{{\text{2max}}}$$ per kilogram body mass was 2.7× greater in horses than steers. This higher $$\dot V{\text{O}}_{{\text{2max}}}$$ was in proportion to the higher total volume of mitochondria in horse versus steer muscle when analyzed from the whole-body samples and from the locomotor muscle samples. In non-locomotor muscles, total mitochondrial volume was greater in horses than steers, but not in proportion to their differences in $$\dot V{\text{O}}_{{\text{2max}}}$$ . The $$\dot V{\text{O}}_{{\text{2max}}}$$ of the mitochondria was estimated to be close to 4.5 ml O2·ml−1 mitochondria in both species. It is concluded that in a comparison of a highly aerobic to a less aerobic mammalian species of similar body size, a higher oxidative potential may be found in all muscles of the more aerobic species. This greater oxidative potential is achieved by a greater total volume of skeletal muscle mitochondria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Muscle ; Morphometry ; Blood flow ; Microcirculation ; Oxidative capacity ; Oxygen transport ; V2,max
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mean minimal capillary transit time was estimated in muscles of various animals using a combination of physiological and morphometric methods. Radioactive microspheres were injected intravascularly in various animals running on a treadmill at maximum oxygen consumption rate (VO2,max) to label blood flow to individual muscles. The muscles were then removed and preserved by standard methods for electron microscopy. The volume density of mitochondria was measured to assess muscle oxidative capacity. Capillary densities in muscle cross-sections, capillary diameters and tortuosities were incorporated into an estimate of capillary volume per unit muscle mass. Mean capillary transit time (t c) in the exercising muscles was estimated by dividing mass-specific capillary volume by mass-specific blood flow. Estimates of t c ranged from values near 1 s in horse heart and thigh muscles to 0.2 s in duck gastrocnemius. The relationship between muscle blood flow and t c was hyperbolic. The experimental data indicate a limiting value of 0.2 s for transit times at very high blood flows. There was no correlation between t c and body-mass-specific VO2,max.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 54 (1986), S. 578-584 
    ISSN: 1439-6327
    Keywords: Mitochondria ; Endurance exercise ; Skeletal muscle ; Glycogen ; Capillaries
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Biopsies of vastus lateralis from seven well-trained males were studied 1 month before and 15–30 min after a 100-km race. The distribution of interfibrillar mitochondria was analyzed to determine whether a long bout of exercise induced a redistribution of mitochondria. Capillary densities and mean fiber areas were also estimated. Capillary density and mean interfibrillar mitochondrial volume density were found to be significantly correlated with running time in the race. An earlier study on these biopsies found that the mean volume densities of interfibrillar and subsarcolemmal mitochondria did not change after a race, but the volume densities of lipid droplets and interfibrillar glycogen decreased significantly. In the present study, volume density of interfibrillar mitochondria [Vv(mi, fim)] before the race was highest with a value of 0.098±0.007 near the fiber border, and decreased progressively with distance to 0.045±0.004 at the fiber center. After the race, Vv(mi, fim) was unchanged at the fiber border, but was significantly higher (0.062±0.005) in the center of the fiber. This increase in mitochondrial volume density was attributable to the shrinkage of the fibers from consumption of energy stores, which was relatively greater for interfibrillar glycogen than for subsarcolemmal glycogen. Thus the primary effect of this extended bout of endurance exercise on vastus lateralis was the nearly complete depletion of the interfibrillar glycogen and lipids, but there was no evidence of an acute redistribution of mitochondria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 222 (1988), S. 333-339 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Individual mitochondria were reconstructed from ultrathin serial sections of selected muscle fibers in the M. semitendinosus of a horse, over a length of nearly two sarcomeres. Mitochondria were found to be highly variable, with size and complexity of single mitochondria increasing with the fractional part of a fiber occupied by mitochondria. In fibers with a mitochondrial volume density of less than 4%, corresponding to the mitochondrial content of fast-twitch glycolytic fibers, mitochondria were generally rather simple cylindrical shapes, oriented parallel to the myofibrils. In fibers with a mitochondrial volume density of more than 7%, corresponding to the mitochondrial content of slow-oxidative or fast-oxidative glycolytic fibers, mitochondria were generally cylindrical at the A-band and Z-plate level of the muscle sarcomeres. However, these mitochondria often had transverse extensions or interconnections that occurred at the I-band level. Volumes of individual mitochondria ranged from as small as a few thousandths of a μm3 up to several μm3 for the incompletely reconstructed portions of the largest mitochondria. Mitochondrial profiles that one would classify from single sections as subsarcolemmal were found to interconnect with other profiles deeper within the fiber. This suggests that it is unlikely that subsarcolemmal and interfibrillar mitochondria are two structurally distinct populations. However, we found no evidence of a reticulum completely interlinking all mitochondrial material in a muscle fiber.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...