Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (5)
  • cellulose  (3)
  • Cellulose/glucuronoxylan  (1)
  • Erwinia chrysanthemi  (1)
Source
  • Articles: DFG German National Licenses  (5)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biology of the Cell 73 (1991), S. 173-178 
    ISSN: 0248-4900
    Keywords: cellulose ; liquid-crystal ; quince ; self-assembly ; xylans
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biology of the Cell 67 (1989), S. 209-220 
    ISSN: 0248-4900
    Keywords: cell walls ; cellulose ; fiber composite ; helicoids
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biology of the Cell 71 (1991), S. 43-55 
    ISSN: 0248-4900
    Keywords: cell wall ; cellulose ; enzyme-gold complex ; helicoidal pattern ; monoclonal antibodies ; polygalacturonans
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Erwinia chrysanthemi ; Pectate lyase ; Pectin degradation ; Plant cell wall
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Erwinia chrysanthemi is a soft-rot pathogenic enterobacterium that provokes maceration of host plant tissues by producing extracellular cell-wall-degrading enzymes, among which are pectate lyases, pectin methyl esterases, and cellulases. Cell wall degradation in leaves and petiole tissue of infectedSaintpaulia ionantha plants has been investigated in order to define the structural and temporal framework of wall deconstruction. The degradation of major cell wall components, pectins and cellulose, was studied by both classical histochemical techniques (Calcofluor and periodic acid-thiocarbohydrazide-silver proteinate staining) and immunocytochemistry (tissue printing for detection of pectate lyases; monoclonal antibodies JIM5 and JIM7 for detection of pectic substrates). The results show that the mode of progression of the bacteria within the host plant is via the intercellular spaces of the parenchyma leaf and the petiole cortex. Maceration symptoms and secretion of pectate lyases PelA, -D, and -E can be directly correlated to the spread of the bacteria. Wall degradation is very heterogeneous. Loss of reactivity with JIM5 and JIM7 was progressive and/or clearcut. The primary and middle lamella appear to be the most susceptible regions of the wall. The innermost layer of the cell wall frequently resists complete deconstruction. At the wall intersects and around intercellular spaces resistant domains and highly degraded domains occurred simultaneously. All results lead to the hypothesis that both spatial organisation of the wall and accessibility to enzymes are very highly variable according to regions. The use of mutants lacking pectate lyases PelA, -D, -E or -B, -C confirm the important role that PelA, PelD, and PelE play in the rapid degradation of pectins from the host cell walls. In contrast, PelB and PelC seem not essential for degradation of the wall, though they can be detected in leaves infected with wild-type bacteria. With Calcofluor staining, regularly localised cellulose-rich and cellulose-poor domains were observed in pectic-deprived walls.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1615-6102
    Keywords: Cell wall ; Cellulose/glucuronoxylan ; Acellular assembly ; Cholesteric analog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Many plant cell walls are constructed according to a helicoidal pattern that is analog to a cholesteric liquid crystal order. This raises the question whether the wall assembly passes through a true but temporary liquid crystal state. The paper focuses on experiments performed from aqueous suspensions of extracted quince slime, i.e., a cellulose/glucuronoxylan wall composite that presents a helicoidal order when observed in situ, within the enlarged periplasm of the seed epidermal cells. Experiments carried out in acellular conditions showed that a spontaneous reassociation into a helicoidal order can be obtained from totally dispersed suspensions. The ultrastructural aspect of the reassembled mucilage suspension was different according to the resin used (LR White or nanoplast, a water-soluble melamin resin). It was always typically polydomain, and when an order was visible it was cholesteric-like and similar to the in situ native organization. Transition states with many imperfections expressed the difficulty of the system to reassemble in the absence of constraining surfaces. The possible intervention of glucuronoxylan (GX) in the ordered assembly of the microfibrils was checked by: (1) progressive extraction of GX by trifluoroacetic acid (TFA). The extraction was associated to a control of the fraction by analysis of uronic acid contents and observation at the electron microscope level. Extraction of GX provoked the formation of a flocculent mass, the flocculation being more intense when the TFA was more concentrated; (2) progressive change of pH in order to analyze the influence of pH on flocculation. Low pH (ca. pH 3) led also to a flocculation of the suspension, but the floc was reversibly lost after dialysis against distilled water. The results indicate the antifloc role of the GX due to the anionic charges carried by the side-chains. However, the function of GX as helper twisting agent in the cholesteric-like reassembly must not be ruled out.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...