Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 69 (1991), S. 1050-1055 
    ISSN: 1432-1440
    Keywords: Ischemia-reperfusion ; Microcirculation ; Oxygen radicals ; Chemoattractants ; PMN-endothelium interaction ; No-reflow ; Reflow-paradox
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Reperfusion after transient tissue ischemia constitutes an irrevocable need to preserve tissue viability. However, release of prolonged ischemia will either result in failure of the microcirculation to reperfusion (no-reflow) and thus the prolongation of hypoxia, or in restoration of blood flow resulting in reoxygenation of the inflicted tissue. While ischemia damages the tissue primarily through hypoxia-induced depletion of energy stores, reoxygenation paradoxically contributes to tissue damage through the formation of oxygen radicals, the release of chemoattractant mediators (TNF, IL-1, LTB4), and the activation of circulating polymorphonuclear leukocytes (PMNs). Through the action of chemoattractant mediators and the upregulation of leukocytic (CD11/CD18) and endothelial adhesion receptors (ICAM, GMP-140), activated PMNs adhere to the endothelium, release further chemoattractants and oxygen radicals and undertain a vicious circle, which will ultimately result in further tissue damage. Both theno-reflow phenomenon and the events initiated by reflow — termed herein as thereflow-paradox — contribute to the failure of the nutritive microvascular perfusion and loss of tissue viability following ischemia and reperfusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...