Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (4)
  • DNA adducts  (2)
  • psbA  (2)
Source
  • Articles: DFG German National Licenses  (4)
Material
Years
  • 1
    ISSN: 0921-8734
    Keywords: (Rat) ; Caloric restriction ; DNA adducts ; I-compounds ; Kidney ; Liver ; Strain comparison ; ^3^2P-postlabelling
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: Key words Complex genotoxic mixtures ; Benzo[a]pyrene ; DNA adducts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Numerous wood preserving waste (WPW) sites in the United States pose genotoxic hazards. WPWs consist of complex mixtures containing toxic, including genotoxic, compounds which are derived from the preservatives coal tar creosote and pentachlorophenol (PCP) and other polychlorinated aromatics. The genotoxicity of WPW extracts, which has not been tested in mammals, cannot be evaluated on the basis of data for individual components because of possible compound interactions. Therefore, whole extracts need to be assayed. 32P-postlabeling represents a powerful tool to determine DNA adduct formation by complex genotoxic mixtures, such as cigarette smoke, diesel exhaust, and coke oven and foundry emissions in experimental animals and humans. In the present study, a mouse bioassay was used in combination with 32P-postlabeling to determine DNA adduct formation induced by hexane/acetone extracts of two samples from a WPW site. Female ICR mice were treated dermally with extract corresponding to 3 mg residue or vehicle control once per day for 2 days and killed 24 h later. Skin, lung, liver, kidney, and heart DNA preparations were assayed by nuclease P1-enhanced postlabeling. Adduct profiles were tissue-specific and displayed a multitude of non-polar DNA adducts with levels amounting to one adduct in 1.6×106 DNA nucleotides in skin (both extracts) and one adduct in 3.2×107 or 1.2×107 DNA nucleotides in liver (extract 1 or extract 2). Based on their chromatographic properties, these adducts appeared largely derived from polycyclic aromatic hydrocarbons (PAHs) present in the extracts. One of the major adducts was identified as the 32P-labeled derivative of the reaction product of 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE I) with N 2 of deoxyguanosine. Total non-polar DNA adduct levels were highest in skin and lung, amounting to 17.4 and 24.0% of the skin values for extracts 1 and 2, respectively, in lung while the corresponding levels in liver were 5.0 and 12.6%. These results were in accord with the carcinogenic potencies of PAHs in these organs. Extract 2 induced higher adduct levels in internal organs, although its PAH concentrations were lower than those of extract 1, i.e. lung, liver, kidney, and heart had 1.4, 2.5, 1.9, and 1.7 times higher total adduct levels and 1.6, 3.3, 1.6, and 1.9 times higher benzo[a]pyrene adduct levels. With the exception of total adducts in lung, the differences between the two extracts were all significant, suggestive of compound interactions. The benzo[a]pyrene adduct levels in the five tissues correlated linearly with total adduct levels and thus represented a surrogate for the latter. Overall, the results suggest that DNA adducts in mouse tissues, as analyzed by 32P-postlabeling, are suitable biomarkers and dosimeters of the genotoxicity of WPW extracts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: gene expression ; photosynthesis ; protein turnover ; psbA ; tac promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The unicellular cyanobacterium Synechococcus sp. PCC 7942 has three psbA genes encoding two different forms of the photosystem II reaction centre protein D1 (D1:1 and D1:2). The level of expression of these psbA genes and the synthesis of D1:1 and D1:2 are strongly regulated under varying light conditions. In order to better understand the regulatory mechanisms underlying these processes, we have constructed a strain of Synechococcus sp. PCC 7942 capable of over-producing psbA mRNA and D1 protein. In this study, we describe the over-expression of D1:1 using a tac-hybrid promoter in front of the psbAI gene in combination with lacI Q repressor system. Over-production of D1:1 was induced by growing cells for 12 h at 50 μmol photons m-2 s-1 in the presence of 40 or 80 μg/ml IPTG. The amount of psbAI mRNA and that of D1:1 protein in cells grown with IPTG was three times and two times higher, respectively. A higher concentration of IPTG (i.e., 150 μg/ml) did not further increase the production of the psbAI message or D1:1. The over-production of D1:1 caused a decrease in the level of D1:2 synthesised, resulting in most PSII reaction centres containing D1:1. However, the over-production of D1:1 had no effect on the pigment composition (chlorophyll a or phycocyanin/number of cells) or the light-saturated rate of photosynthesis. This and the fact that the total amounts of D1 and D2 proteins were not affected by IPTG suggest that the number of PSII centres within the membranes remained unchanged. From these results, we conclude that expression of psbAI can be regulated by using the tac promoter and lacI Q system. However, the accumulation of D1:1 protein into the membrane is regulated by the number of PSII centres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: gene expression ; photosynthesis ; protein turnover ; psbA ; tac promoter ; D1 protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Over-expression of the psbAIII gene encoding for the D1 protein (form II; D1:2) of the photosystem II reaction centre in the Synechococcus sp. PCC 7942 was studied using a tac promoter and the lacI Q system. Over-expression was induced with 40 μg/ml IPTG in the growth medium for either 6 or 12 h at growth irradiance (50 μmol photons m-2 s-1). This treatment doubled the amount of psbAII/III mRNA and the D1:2 protein in membranes but decreased the amount of psbAI messages and the D1:1 protein. The total amount of both heterodimeric reaction centre proteins, D1 and D2, remained constant under growth light conditions, indicating that the number of PSII centres in the membranes was not affected, only the form of the D1 protein was changed from D1:1 to D1:2 in most centres. When the cells were photoinhibited either at 500 or 1000 μmol photons m-2 s-1, in the presence or absence of the protein synthesis inhibitor lincomycin, the D1:2 protein remained at a higher level in cells in which over-expression had been induced by IPTG. These cells were also less prone to photoinhibition of PSII. It is suggested that the tolerance of cells to photoinhibition increases when most PSII reaction centres contain the D1:2 protein at the beginning of high irradiance. This tolerance is further strengthened by maintaining psbAIII gene over-expression during the photoinhibitory treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...