Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 121 (1955), S. 1-12 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Phospholipid remodeling ; deacylation-reacylation ; phospholipase A2 ; fatty acid incorporation ; fatty acid desaturation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Acyl chains linked to phospholipids of the yeast, Saccharomyces cerevisiae, are mainly C16:1 and C18:1 accompanied by minor amounts of C14:0, C16:0 and C18:0. In view of this rather simple fatty acid composition, the question arose whether in yeast, as in higher eukaryotes, fatty acyl groups were characteristically distributed among the sn-1 and sn-2 positions of distinct phospholipid classes. Analysis of fatty acids linked to the sn-1 and sn-2 positions of the major phospholipids showed that indeed saturated fatty acyl groups predominated in the sn-1 positions. While the percentage of saturated fatty acids was low (10%) in phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) from cells grown on rich medium, it was higher in phosphatidylserine (PtdSer) (25%) and highest in phosphatidylinositol (PtdIns) (41%). Oleate was mainly linked to position sn-2, while palmitoleate predominated in position sn-1. Striking differences in the fatty acid distribution of phospholipids that are metabolically closely related (e.g. PtdSer and PtdEtn, PtdEtn and PtdCho, and PtdIns and PtdSer) suggest that pathways must exist for the generation of distinct phospholipid molecular species within the different phospholipid classes. The highly selective incorporation of exogenous [14C]palmitic acid (90%) and [3H]oleic acid (99%) into the sn-2 position of PtdCho, and the preferential incorporation of these fatty acids into the sn-2 position of PtdEtn (70 and 90%, respectively, for palmitic and oleic acid) are compatible with the postulate that phospholipase A2-mediated deacylation followed by reacylation of the lysophospholipids is involved in the generation of phospholipid species in yeast.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...