Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 145-158 
    ISSN: 0006-3592
    Keywords: biodegradable polymeric substrates ; cell adhesion ; liver cell culture ; albumin secretion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The interactions of primary rat liver cells with biodegradable polymeric substrates were investigated in vitro to assess the suitability of the polymer materials for use in cell transplantation devices. The kinetics of cell adhesion to, and the growth and biochemical function of cells maintained on, films formed from poly (D,L-lactic-co-glycolic acid, 88: 12) (PLGA) or from a 50/50 (w/w) blend of PLGA and poly (L-lactic acid) (PLLA) were evaluated in comparison to two control substrates, matrigel coated or collagen-coated polystyrene petri dishes. The rate of cell adhesion to both types of polymeric substrates was similar to the rate of adhesion to the collagen control substrate, but of the two polymers, only the blend was suitable for extended culture. Hepatocytes maintained on the polymer blend films showed retention of differentiated cell function as measured by the rate of albumin secretion-the rate of albumin secretion by cells on the films was the same as the rate for cells on matrigel and reached a level in the range of reported in vivo levels (140-160 μg/106 cells/24 h). In contrast, albumin secretion by hepatocytes maintained on collagen-coated polystyrene culture dishes declined over five days to a level one third that of the initial level and one fifth that of cells maintained on the polymer blend films on day five. Such retention of differentiated cell function by hepatocytes in culture has previously been observed only when hepatocytes were cultured in the presence of exogenous extracellular matrix proteins or were cocultured with another cell type. In addition to retention of differentiated function, the cells maintained on the polymer blend films also displayed rates of DNA synthesis similar to controls maintained on collagen-coated polystyrene, a substrate optimal for DNA synthesis.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 47 (1991), S. 236-241 
    ISSN: 0730-2312
    Keywords: fibronectin ; integrins ; signal transduction ; growth factors ; angiogenic factors ; capillary differentiation ; mechanical tension ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...