Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (3)
  • 2020-2023  (1)
  • 2000-2004  (2)
  • 2020  (1)
  • 2000  (2)
Source
  • Opus Repository ZIB  (3)
Years
  • 2020-2023  (1)
  • 2000-2004  (2)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: One important step in the fabrication of silicon-based integrated circuits is the creation of semiconducting areas by diffusion of dopant impurities into silicon. Complex models have been developed to investigate the redistribution of dopants and point defects. In general, numerical analysis of the resulting PDEs is the central tool to assess the modelling process. We present an adaptive approach which is able to judge the quality of the numerical approximation and which provides an automatic mesh improvement. Using linearly implicit methods in time and multilevel finite elements in space, we are able to integrate efficiently the arising reaction-drift-diffusion equations with high accuracy. Two different diffusion processes of practical interest are simulated.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-10
    Description: Dynamical process simulation of complex real-life problems often requires the use of modern algorithms, which automatically adapt both the time and space discretization in order to get error-controlled approximations of the solution. In this paper, a combination of linearly implicit time integrators of Rosenbrock type and adaptive multilevel finite elements based on a posteriori error estimates is presented. This approach has proven to work quite satisfactorily for a wide range of challenging practical problems. We show the performance of our adaptive method for two applications that arise in the study of flame balls and brine transport in porous media.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-05
    Description: Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and i) characterized regarding their cellular and matrix composition or secondly ii) treated with interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate distribution of IL-1β, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aim to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...