Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (13)
  • 1995-1999  (12)
  • 1985-1989  (1)
  • ddc:000  (13)
Source
  • Opus Repository ZIB  (13)
Years
Year
Keywords
  • ddc:000  (13)
Language
  • 11
    Publication Date: 2014-02-26
    Description: In molecular dynamics applications there is a growing interest in including quantum effects for simulations of larger molecules. This paper is concerned with {\em mixed quantum-classical} models which are currently discussed: the so-called QCMD model with variants and the time-dependent Born-Oppenheimer approximation. All these models are known to approximate the full quantum dynamical evolution---under different assumptions, however. We review the meaning of these assumptions and the scope of the approximation. In particular, we characterize those typical problematic situations where a mixed model might largely deviate from the full quantum evolution. One such situation of specific interest, a non-adiabatic excitation at certain energy level crossings, can promisingly be dealt with by a modification of the QCMD model that we suggest.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-02-27
    Description: We present a particular method for the explicit elimination of rapidly oscillating micro-scales in certain singularly perturbed conservative mechanical systems. Non-linear effects call for a non-trivial averaging procedure that we call {\em homogenization in time.} This method is based on energy principles and weak convergence techniques. Since non-linear functionals are in general {\em not} weakly sequentially continuous, we have to study {\em simultaneously} the weak limits of all those non-linear quantities of the rapidly oscillating components which are of importance for the underlying problem. Using the physically motivated concepts of {\em virial theorems}, {\em adiabatic invariants}, and {\em resonances}, we will be able to establish sufficiently many relations between all these weak limits, allowing to calculate them explicitly. Our approach will be {\em paradigmatical} rather than aiming at the largest possible generality. This way, we can show most clearly how concepts and notions from the physical background of the underlying mathematical problem enter and help to determine relations between weak limit quantities. In detail we will discuss natural mechanical systems with a strong constraining potential on Riemannian manifolds, the questions of realization of holonomic constraints, and singular limits of mixed quantum-classical coupling models. This latter class of problems also leads to a new proof for the adiabatic theorem of quantum mechanics. The strength of our methodology will be illustrated by applications to problems from plasma physics, molecular dynamics and quantum chemistry.
    Keywords: ddc:000
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-02-26
    Description: The present paper developes an adaptive multilevel approach for parabolic PDE's - as a first step, for one linear scalar equation. Full adaptivity of the algorithm is conceptually realized by simultaneous multilevel discretization in both time and space. Thus the approach combines multilevel time discretization, better known as extrapolation methods, and multilevel finite element space discretization such as the hierarchical basis method. The algorithmic approach is theoretically backed by careful application of fundamental results from semigroup theory. These results help to establish the existence of asymptotic expansions (in terms of time-steps) in Hilbert space. Finite element approximation then leads to perturbed expansions, whose perturbations, however, can be pushed below a necessary level by means of an adaptive grid control. The arising space grids are not required to satisfy any quasi- uniformity assumption. Even though the theoretical presentation is independent of space dimension details of the algorithm and numerical examples are given for the 1-D case only. For the 1-D elliptic solver, which is used, an error estimator is established, which works uniformly well for a family of elliptic problems. The numerical results clearly show the significant perspectives opened by the new algorithmic approach.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...