Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (6)
  • 1985-1989
  • 1997  (6)
  • English  (6)
Years
  • 1995-1999  (6)
  • 1985-1989
Year
Keywords
Language
  • English  (6)
  • 1
    Publication Date: 2014-02-26
    Description: \noindent In molecular dynamics applications there is a growing interest in so-called {\em mixed quantum-classical} models. These models describe most atoms of the molecular system by the means of classical mechanics but an important, small portion of the system by the means of quantum mechanics. A particularly extensively used model, the QCMD model, consists of a {\em singularly perturbed}\/ Schrödinger equation nonlinearly coupled to a classical Newtonian equation of motion. This paper studies the singular limit of the QCMD model for finite dimensional Hilbert spaces. The main result states that this limit is given by the time-dependent Born-Oppenheimer model of quantum theory---provided the Hamiltonian under consideration has a smooth spectral decomposition. This result is strongly related to the {\em quantum adiabatic theorem}. The proof uses the method of {\em weak convergence} by directly discussing the density matrix instead of the wave functions. This technique avoids the discussion of highly oscillatory phases. On the other hand, the limit of the QCMD model is of a different nature if the spectral decomposition of the Hamiltonian happens not to be smooth. We will present a generic example for which the limit set is not a unique trajectory of a limit dynamical system but rather a {\em funnel} consisting of infinitely many trajectories.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: In our previous work [Preprint SC 97-48] we have studied natural mechanical systems on Riemannian manifolds with a strong constraining potential. These systems establish fast nonlinear oscillations around some equilibrium manifold. Important in applications, the problem of elimination of the fast degrees of freedom, or {\em homogenization in time}, leads to determine the singular limit of infinite strength of the constraining potential. In the present paper we extend this study to systems which are subject to external forces that are non-potential, depending in a mixed way on positions {\em and}\/ velocities. We will argue that the method of weak convergence used in [1997] covers such forces if and only if they result from viscous friction and gyroscopic terms. All the results of [1997] directly extend if there is no friction transversal to the equilibrium manifold; elsewise we show that instructive modifications apply.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: In molecular dynamics applications there is a growing interest in including quantum effects for simulations of larger molecules. This paper is concerned with {\em mixed quantum-classical} models which are currently discussed: the so-called QCMD model with variants and the time-dependent Born-Oppenheimer approximation. All these models are known to approximate the full quantum dynamical evolution---under different assumptions, however. We review the meaning of these assumptions and the scope of the approximation. In particular, we characterize those typical problematic situations where a mixed model might largely deviate from the full quantum evolution. One such situation of specific interest, a non-adiabatic excitation at certain energy level crossings, can promisingly be dealt with by a modification of the QCMD model that we suggest.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-27
    Description: We present a particular method for the explicit elimination of rapidly oscillating micro-scales in certain singularly perturbed conservative mechanical systems. Non-linear effects call for a non-trivial averaging procedure that we call {\em homogenization in time.} This method is based on energy principles and weak convergence techniques. Since non-linear functionals are in general {\em not} weakly sequentially continuous, we have to study {\em simultaneously} the weak limits of all those non-linear quantities of the rapidly oscillating components which are of importance for the underlying problem. Using the physically motivated concepts of {\em virial theorems}, {\em adiabatic invariants}, and {\em resonances}, we will be able to establish sufficiently many relations between all these weak limits, allowing to calculate them explicitly. Our approach will be {\em paradigmatical} rather than aiming at the largest possible generality. This way, we can show most clearly how concepts and notions from the physical background of the underlying mathematical problem enter and help to determine relations between weak limit quantities. In detail we will discuss natural mechanical systems with a strong constraining potential on Riemannian manifolds, the questions of realization of holonomic constraints, and singular limits of mixed quantum-classical coupling models. This latter class of problems also leads to a new proof for the adiabatic theorem of quantum mechanics. The strength of our methodology will be illustrated by applications to problems from plasma physics, molecular dynamics and quantum chemistry.
    Keywords: ddc:000
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...