Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 1995-1999  (2)
  • 1997  (2)
Material
  • Electronic Resource  (2)
Years
  • 1995-1999  (2)
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Age-related changes in the expression and localization of two distinct intracellular aspartic proteinases, cathepsin E (CE) and cathepsin D (CD), were investigated in the rat cerebral cortex and the brainstem by immunocytochemical and quantitative methods using discriminative antibodies specific for each enzyme. Non-lysosomal CE was barely detectable in these two brain tissues in the embryonic stages, whereas relatively high expression of lysosomal CD was observed in embryonic tissues. After birth, CE was increasingly expressed in these tissues with aging to attain maximal levels at 30 months of age. Western blot analyses revealed that CE existed predominantly as the mature enzyme at 2 and 17 months of age, whereas it was present as not only the mature enzyme but also the proenzyme at 30 months of age. On the other hand, CD was mainly present in the mature form throughout development, although its level in these tissues was also significantly increased with aging. The CE-positive cortical and brainstem neurons of the aged rat corresponded well with cells emitting autofluorescence for lipopigments. By the double-staining technique, most of the CE-positive cortical and brainstem neurons of the aged rat were also positive for antibody to the carboxyl-terminal fragments of amyloid precursor protein (APP634–695), intracellular accumulation of which is thought to be associated with age-related changes in the endosome/lysosome system. It is important that electron microscopy revealed that CE in brainstem neurons of the aged rat colocalized with CD in the lipofuscin-containing lysosomes. These results indicate that aging results in the increased expression and lysosomal localization of CE in cortical and brainstem neurons and changes in the endosomal/lysosomal proteolytic system, which may be related to lipofuscinogenesis and altered intracellular APP metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Helix formation between various combinations of 3‘–5’ linked oligoribouridylates and oligoriboadenylates from dimer to dodecamer has been studied to gain information on the chain-length requirement for the template-directed condensation of oligoribonucleotides. We have measured the helix formation under high oligoribonucleotide concentration in the presence of magnesium ion at 0–50°C by UV or CD, as many model processes of oligoribonucleotides replication have been carried out under such conditions. Adenylic acid, (pA), diadenylic acid, (pA)2, or triadenylic acid, (pA)3, forms a helix with poly(U) or oligo(U) with a chain length of more than eight. On the other hand, neither uridylic acid, (pU), nor diuridylic acid, (pU)2, can form a helix with oligo(A) or poly(A). Triuridylic acid, (pU)3, or the longer oligo(U) forms a helix with oligo(A) with a chain length of over six. The results suggest that a trimer is the minimum unit as an incorporating nucleotide for conducting any set of nonenzymatic template-directed synthesis, A→U and U→A, as the nonenzymatic template-directed condensation of oligoribonucleotides correlates well with the results of helix formation of complementary oligoribonucleotides. We have further found the partial helix formation between 2‘–5’ linked decauridylate, (pU)10, and pA or 2‘–5’ linked (pA)2 at 0 °C, which indicates the possibility of the template activity of long 2‘–5’ linked oligonucleotides for the nonenzymatic oligonucleotide synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...