Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • 1995-1999  (3)
  • 1955-1959
  • Radical pairs  (2)
  • 1,4-Benzoquinones  (1)
  • 1
    ISSN: 0947-3440
    Keywords: Phenazin-5(10H)-yl ; ESR spectroscopy ; Radical pairs ; π Interactions ; Dimer absorption ; Magnetic susceptibility ; Nitrogen heterocycles ; Radicals ; Magnetic properties ; Solid-state chemistry ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Introduction of tert-butyl groups into the phenazine frame-work was accomplished by treatment of 5-acetyl-5,10-dihydrophenazine (2a) with tert-butyl chloride in the presence of AlCl3. Starting from the 2,8- or 3,7-di-tert-butyl-substituted derivatives 2c and 2b, a series of phenazin-5(10H)-yl radicals (1c-i) was synthesized and characterized by ESR and EN-DOR spectroscopy. With the exception of 1c, all phenazin-5(10H)-yls were obtained in crystalline form, and for 1d-f the long-wavelength absorption band at λ ≈ 870 nm indicates intermolecular π-π interactions in the solid state. For 1d, 1e and 1h the crystal structure could be determined. The unit cell of 1d consists of eight phenazin-5(10H)-yls. Surprisingly, four of them are arranged in radical pairs, whereas the other four lie independently in the lattice. In agreement with this structure, the magnetic susceptibility results correspond to a content of 50% monoradical and an almost complete spinpairing in the radical pairs up to T = 220 K. In 1e, the four phenazin-5(10H)-yls in the unit cell are arranged in two independent radical pairs, A and B, which are characterized by close interplanar distances and short intermolecular contacts between atoms with significant spin populations. Accordingly, the susceptibility data indicate strong spin-pairing at low temperature. Due to extensive steric shielding of the phenazin-5(10H)-yl framework, the crystal structure of 1h gives no evidence of any π-π interactions between adjacent radicals. As expected, the magnetic susceptibility of 1h corresponds to that of an ordinary monoradical.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0947-3440
    Keywords: Phenazin-5(10H)-yl radicals ; Radical pairs ; π-π-Interactions ; Pimerization ; Dimer absorption ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The unit cell of 10-ethylphenazin-5(10H)yl · H2O consists of eight phenazin-5(10H)-yls that are arranged in four independent radical pairs A-D. All pairs show close interplanar distances (3.28-3.36 Å). Furthermore, A, B, and D are characterized by short intermolecular contacts between atoms with significant spin populations. This is not valid for the pair C with the closest interplanar distance of 3.28 Å. Magnetic susceptibility measurements as a function of temperature indicate complete spin pairing (“pimerization”) between 20 and 100 K. Therefore, the radical pair C provides evidence that unspecific close interplanar contacts together with a reasonable overlap of the π systems are sufficient to lead to pimerization.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-193X
    Keywords: 1,4-Benzoquinones ; [2.2]Paracyclophanes ; 1,4,8,11-Pentacenetetrones ; Cyclic voltammetry ; Radical anions ; ESR/ENDOR spectroscopy ; Intramolecular electron transfer ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Three types of tetrone radical anions in which two 1,4-benzoquinone units are connected by ethano (1·-, 2·-), [2.2]paracyclophane (3·-, 4·-), and anthracene bridges (5·-, 6·-) have been studied by ESR and ENDOR spectroscopy. The displacement of the unpaired electron over the two π moieties in the [2.2]cyclophane radical anions 1·--4·- and the marked difference between the first and second reduction potentials, ΔE = |E20 - E10| ≥ 0.20 V, are evidence for a substantial intramolecular electronic interaction between the two electrophores. Similar ΔE data for the syn- (3) and anti-naphthalenophanes (4) indicate that most of the intramolecular electronic interaction takes place through the [2.2]paracyclophane bridge. When ion pairing is inhibited by complexation of the cation, the unpaired electron in 5·- and 6·- is also delocalized over the whole pentacenetetrone system at temperatures as low as 160 K.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...