Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (4)
  • 1995-1999  (4)
  • Extracellular glutamate  (2)
  • Spain  (2)
  • 1
    ISSN: 1432-1912
    Keywords: Key words Microdialysis ; Extracellular glutamate ; Veratridine ; Carbamazepine ; Oxcarbazepine ; Lamotrigine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Lamotrigine, carbamazepine and oxcarbazepine inhibit veratrine-induced neurotransmitter release from rat brain slices in concentrations corresponding to those reached in plasma or brain in experimental animals or humans after anticonvulsant doses, presumably due to their sodium channel blocking properties. Microdialysis measurements of extracellular glutamate and aspartate were carried out in conscious rats in order to investigate whether corresponding effects occur in vivo. Veratridine (10 μM) was applied via the perfusion medium to the cortex and the corpus striatum in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (1 mM in perfusion medium). Maximally effective anticonvulsant doses of carbamazepine (30 mg/kg), oxycarbazepine (60 mg/kg) and lamotrigine (15 mg/kg) were given orally. The uptake inhibitor increased extracellular glutamate and aspartate about 2-fold in striatum and about 7-fold and 3-fold, respectively, in cortex. Veratridine caused a further 2-3-fold increase in extracellular glutamate in striatum and cortex, respectively, but its effect on extracellular aspartate was less marked in both areas. None of the anticonvulsant compounds affected the veratridine-induced increases in extracellular glutamate or aspartate in the striatum which were, however, markedly inhibited by tetrodotoxin (1 μM) and thus are sensitive to sodium channel blockade. In the cortex, the same drugs at the same doses did cause about 50% inhibition of the veratridine-induced increase in extracellular glutamate. Carbamazepine and to a lesser extent lamotrigine, but not oxcarbazepine, also inhibited the veratridine-induced increase in extracellular aspartate in the cortex. Although our results might seem to support the view that inhibition of glutamate and aspartate release is responsible for the anticonvulsant effects of lamotrigine, carbamazepine and oxcarbazepine, two complementary findings argue against this interpretation. First, as previously shown, inhibition of electrically induced release of glutamate requires 5 to 7 times higher concentrations of these compounds than release elicited by veratrine. Second, the present study indicates that doses totally suppressing convulsions caused no inhibition in the striatum and at best a 50% inhibition in the brain cortex. From this we conclude that the doses used here, although to some extent effective against veratridine, did not suppress the release of GLU and ASP elicited by the normal ongoing electrical activity of the glutamatergic and aspartatergic neurons and that the mechanism of the suppression of convulsions must be sought elsewhere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Microdialysis ; Extracellular glutamate ; Veratridine ; Carbamazepine ; Oxcarbazepine ; Lamotrigine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Lamotrigine, carbamazepine and oxcarbazepine inhibit veratrine-induced neurotransmitter release from rat brain slices in concentrations corresponding to those reached in plasma or brain in experimental animals or humans after anticonvulsant doses, presumably due to their sodium channel blocking properties. Microdialysis measurements of extracellular glutamate and aspartate were carried out in conscious rats in order to investigate whether corresponding effects occur in vivo. Veratridine (10 μM) was applied via the perfusion medium to the cortex and the corpus striatum in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (1 mM in perfusion medium). Maximally effective anticonvulsant doses of carbamazepine (30 mg/kg), oxycarbazepine ( 60 mg/kg) and lamotrigine (15 mg/kg) were given orally. The uptake inhibitor increased extracellular glutamate and aspartate about 2-fold in striatum and about 7-fold and 3-fold, respectively, in cortex. Veratridine caused a further 2–3-fold increase in extracellular glutamate in striatum and cortex, respectively, but its effect on extracellular aspartate was less marked in both areas. None of the anticonvulsant compounds affected the veratridine-induced increases in extracellular glutamate or aspartate in the striatum which were, however, markedly inhibited by tetrodotoxin (1 μM) and thus are sensitive to sodium channel blockade. In the cortex, the same drugs at the same doses did cause about 50% inhibition of the veratridine-induced increase in extracellular glutamate. Carbamazepine and to a lesser extent lamotrigine, but not oxcarbazepine, also inhibited the veratridine-induced increase in extracellular aspartate in the cortex. Although our results might seem to support the view that inhibition of glutamate and aspartate release is responsible for the anticonvulsant effects of lamotrigine, carbamazepine and oxcarbazepine, two complementary findings argue against this interpretation. First, as previously shown, inhibition of electrically induced release of glutamate requires 5 to 7 times higher concentrations of these compounds than release elicited by veratrine. Second, the present study indicates that doses totally suppressing convulsions caused no inhibition in the striatum and at best a 50% inhibition in the brain cortex. From this we conclude that the doses used here, although to some extent effective against veratridine, did not suppress the release of GLU and ASP elicited by the normal ongoing electrical activity of the glutamatergic and aspartatergic neurons and that the mechanism of the suppression of convulsions must be sought elsewhere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of legal medicine 112 (1999), S. 340-341 
    ISSN: 1437-1596
    Keywords: Key words PCR ; STR ; D8S1179 ; D16S539 ; D18S51 ; D21S11 ; Spain ; Hardy-Weinberg equilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Law
    Notes: Abstract Population data were generated for four tetrameric short tandem repeat loci systems (D8S1179, D16S539, D18S51 and D21S11) for a Spanish Caucasian population sample (n = 218–219 individuals) using PCR. All loci were highly polymorphic, met Hardy-Weinberg expectations and the results demonstrated the assumption of independence of the loci analysed. The allele frequency data can be used in identity testing to estimate the frequency of a multiple PCR-based DNA profile in the Spanish population.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of legal medicine 112 (1998), S. 70-71 
    ISSN: 1437-1596
    Keywords: Key words PCR ; STR ; HUMLPL ; D5S818 ; D7S820 ; D13S317 ; Population database ; Spain ; Hardy-Weinberg equilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Law
    Notes: Abstract Allele and genotype frequencies for four tetrameric short tandem repeat loci were determined in a Spanish population sample (N = 193-225) using PCR. All loci met Hardy-Weinberg expectations and the results demonstrated the assumption of independence of the loci analysed. The allele frequency data can be used in identity testing to estimate the frequency of a multiple PCR-based DNA profile in the Spanish population.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...