Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • 1990-1994  (3)
Material
  • Electronic Resource  (3)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 350 (1991), S. 241-243 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We have isolated complementary DNAs of the Knl locus from maize seedling RNA using genomic DNA that was pre-viously cloned by transposon tagging5. Reversion analysis had indicated that these sequences are closely associated with the Knl gene5'6. The sequence of the Knl transcript (Fig. 1) was ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 14 (1992), S. 227-236 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: It is useful to envision two fundamentally different ways by which the timing of plant development is regulated: developmental stage-transition mechanisms and time-to-flowering mechanisms. The existence of both mechanisms is indicated by the behavior of various mutants. Shoot stage transitions are defined by dominant mutants representing at least four different genes; each mutant retards transitions from juvenile shoot stages to more adult shoot stages. In addition, dominant leaf stage-transition mutants in at least seven different genes have similar phenotypes, but the leaf rather than the shoot is the. focus (and at least two of these genes encode domain proteins.) One mutant, Hairy sheath frayed 1-0 (Hsf1-O) simultaneously affects shoot and leaf; this mutant's behavior initiated our interest in plant heterochronism(1). The second type of timekeeping involves time-to-flowering. As with most plant but not animals species, cultivars of the maize species vary greatly for the time-to-flowering quantitative trait: between 6 and 14 weeks is common. It is via the 'slipping time frames' interaction that takes place between stage-transition mutants and time-to-flowering genetic back-grounds that unexpected and radical phenotypes occur. We see a reservoir of previously unsuspected morphological possibilities among the few heterochronic genotypes we have constructed, possibilities that may mimic the sort of variation needed to fuel macroevolution without having to posit (as done by Goldschmidt(2)) any special macromutational mechanisms.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 401-414 
    ISSN: 0192-253X
    Keywords: Mosaic of cell identities ; knotted leaf ; homeobox gene ; cell fates ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The dominant Knotted-1 mutations in maize alter development of the leaf blade. Sporadic patches of localized growth, or knots, and fringes of ectopic ligule occur along lateral veins of mutant leaf blades. In addition, bundle sheaths do not completely encircle lateral veins on mutant leaf blades. We have compared mutant leaf blades with wild-type leaves to determine the precise nature of the perturbed regions. Our analysis includes characterization of epidermal cell shapes, localization of photosynthetic proteins and histology of the leaf. We show that mutant leaf blades are a mosaic of leaf organ components. Affected regions of mutant leaf blades resemble either sheath or auricle tissue in both external and internal features. This conversion of blade cells represents an acropetal shift of more basal parts of the leaf blade region and correlates with previously identified ectopic expression of the Knotted-1 protein in the leaf blade. We propose that inappropriate expression of Kn1 interferes with the process of establishment of cell identities, resulting in early termination of the normal blade development program or precocious expression of the sheath and auricle development programs. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...