Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • 1985-1989  (3)
  • multidimensional scaling  (2)
  • Ultrametric trees  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of classification 2 (1985), S. 173-192 
    ISSN: 1432-1343
    Keywords: Ultrametric trees ; Mathematical programming ; Variable importance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the development of a new methodology which simultaneously estimates in a least-squares fashion both an ultrametric tree and respective variable weightings for profile data that have been converted into (weighted) Euclidean distances. We first review the relevant classification literature on this topic. The new methodology is presented including the alternating least-squares algorithm used to estimate the parameters. The method is applied to a synthetic data set with known structure as a test of its operation. An application of this new methodology to ethnic group rating data is also discussed. Finally, extensions of the procedure to model additive, multiple, and three-way trees are mentioned.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Psychometrika 54 (1989), S. 217-229 
    ISSN: 1860-0980
    Keywords: multidimensional scaling ; monotone spline ; specific dimensions ; maximum likelihood estimation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Psychology
    Notes: Abstract An Extended Two-Way Euclidean Multidimensional Scaling (MDS) model which assumes both common and specific dimensions is described and contrasted with the “standard” (Two-Way) MDS model. In this Extended Two-Way Euclidean model then stimuli (or other objects) are assumed to be characterized by coordinates onR common dimensions. In addition each stimulus is assumed to have a dimension (or dimensions) specific to it alone. The overall distance between objecti and objectj then is defined as the square root of the ordinary squared Euclidean distance plus terms denoting the specificity of each object. The specificity,s j , can be thought of as the sum of squares of coordinates on those dimensions specific to objecti, all of which have nonzero coordinatesonly for objecti. (In practice, we may think of there being just one such specific dimension for each object, as this situation is mathematically indistinguishable from the case in which there are more than one.) We further assume that δ ij =F(d ij ) +e ij where δ ij is the proximity value (e.g., similarity or dissimilarity) of objectsi andj,d ij is the extended Euclidean distance defined above, whilee ij is an error term assumed i.i.d.N(0, σ2).F is assumed either a linear function (in the metric case) or a monotone spline of specified form (in the quasi-nonmetric case). A numerical procedure alternating a modified Newton-Raphson algorithm with an algorithm for fitting an optimal monotone spline (or linear function) is used to secure maximum likelihood estimates of the paramstatistics) can be used to test hypotheses about the number of common dimensions, and/or the existence of specific (in addition toR common) dimensions. This approach is illustrated with applications to both artificial data and real data on judged similarity of nations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Psychometrika 50 (1985), S. 275-300 
    ISSN: 1860-0980
    Keywords: multidimensional scaling ; unfolding ; preference analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Psychology
    Notes: Abstract Three-way unfolding was developed by DeSarbo (1978) and reported in DeSarbo and Carroll (1980, 1981) as a new model to accommodate the analysis of two-mode three-way data (e.g., nonsymmetric proximities for stimulus objects collected over time) and three-mode, three-way data (e.g., subjects rendering preference judgments for various stimuli in different usage occasions or situations). This paper presents a revised objective function and new algorithm which attempt to prevent the common type of degenerate solutions encountered in typical unfolding analysis. We begin with an introduction of the problem and a review of three-way unfolding. The three-way unfolding model, weighted objective function, and new algorithm are presented. Monte Carlo work via a fractional factorial experimental design is described investigating the effect of several data and model factors on overall algorithm performance. Finally, three applications of the methodology are reported illustrating the flexibility and robustness of the procedure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...