Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • (P ostreatus)  (1)
  • China  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular 1163 (1993), S. 158-164 
    ISSN: 0167-4838
    Keywords: (P ostreatus) ; EPR ; Glycosylation ; High-spin ferric state ; Peroxidase ; Phenolic compound ; Protoporphyrin IX
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: ammonia volatilization ; calcium carbonate ; China ; loess ; simulations ; urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ammonia volatilization is the major pathway for mineral nitrogen loss in the calcareous soils of the Chinese loess plateau, with maximum losses reaching 50% of the fertilizer-N applied. A volatilization-diffusion experiment was carried out in the laboratory using a forced-draft system and soil columns of 15.5 cm depth. Urea was surface applied at rates of 210 kg N ha-1 to a soil with 10% CaCO3 and a pH of 7.7. The amount of ammonia volatilized as well as the concentration profiles of ammoniacal-nitrogen and soil pH in the upper 50 mm of the soil columns after 4, 7 and 10 days were measured and subsequently modelled. The mechanistic model of Rachhpal-Singh and Nye, originally developed for neutral, non-calcareous soils, was modified to include the pH-buffering action of the soil carbonates. Model parameters were independently determined or taken from the literature. Measured and predicted cumulative NH3 losses agreed very well in the first 10 days following fertilizer application. However, in contrast to the simulations, NH3-volatilization was still proceeding in the experiment even after 13 days, with cumulative losses reaching 60% of the applied N. In addition to the high initial soil pH, the low bulk density and high volumetric air content of the soil columns used for the experiment proved decisive for the high rates of ammonia volatilization, provoking a strong increase in the amount of ammoniacal-N diffusing towards the soil surface as gaseous NH3. The simulations showed that due to the high soil pH, the buffering action of the soil carbonates played a comparatively smaller role.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...