Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (4)
  • Cowpea Rhizobium sp  (2)
  • 4-Hydroxymandelate  (1)
  • Bacteroids  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 149 (1988), S. 308-311 
    ISSN: 1432-072X
    Keywords: Ammonium transport ; Ammonium permease ; Rhizobium trifolii ; Cowpea Rhizobium sp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Free-living Rhizobium trifolii MNF 1001 and cowpea Rhizobium MNF 2030 grown in chemostat culture under nitrogen limitation had high activities of an ammonium permease. In phosphate-limited, nitrogen-excess conditions, strains MNF 1001 and MNF 2030 retained 20% and 50%, respectively, of the ammonium uptake activity found in nitrogen-limited cells. Uptake in both strains was sensitive to azide, cyanide, carbonyl cyanide m-chlorophenyl hydrazone and 2,4-dinitrophenol. A gradient of ammonium concentration greater than 150-fold developed across the membrane within 20 min in cells of strain MNF 1001 grown under ammonia limitation. The pH optimum for ammonium uptake by N-limited cells of both MNF 1001 and MNF 2030 was around pH 7. The apparent K m values for the ammonium permease in strains MNF 2030 and MNF 1001 were 3.9±1.6 μM and 2.0±1.6 μM respectively, and the V max was 47±2.6 nmol min-1 (mg protein)-1 for MNF 2030 and 101±5.1 nmol min-1 (mg protein)-1 for MNF 1001. Isolated snake bean bacteroids of strain MNF 2030 capable of transporting succinate and l-glutamate had no detectable ammonium uptake activity. It therefore appears that the ammonium permeases in cells of these two strains are not as tightly regulated as in R. leguminosarum MNF 3841.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 151 (1989), S. 520-523 
    ISSN: 1432-072X
    Keywords: Rhizobium leguminosarum biovar trifolii ; Aromatic metabolism ; Mandelate ; 4-Hydroxymandelate ; Ketoadipate pathway
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhizobium leguminosarum biovar trifolii TA1 grows on 4-hydroxymandelate and enzymes involved in its catabolism are inducible. Strain TA1 does not grown on mandelate or cis, cis-muconate, but spontaneous mutants capable of growth on these substrates were isolated. Enzymes involved in mandelate degradation were also inducible. The presence of intermediates of the mandelate and hydroxymandelate pathways resulted in a significant decrease in some of the enzymes involved in their degradation. Succinate and acetate, end products of the pathways, and glucose caused reductions in the levels of enzymes in the mandelate and hydroxymandelate pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 152 (1989), S. 606-610 
    ISSN: 1432-072X
    Keywords: Rhizobium leguminosarum ; Catabolic enzymes ; Bacteroids ; Percoll gradients ; Chemostats ; Substrate consumption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bacteroids of R. leguminosarum MNF3841 isolated from pea nodules using Percoll gradients had activities of TCA cycle enzymes up to 6-fold higher than those measured in free-living cells grown on fumarate or sucrose. Activities of sugar catabolic enzymes on the other hand were 2–14-fold lower in isolated bacteroids than in sucrose-grown free-living cells. In continuous culture, cells of strain MNF3841 grown on sucrose under P i limitation had 2–3-fold higher activities of invertase, glucose-6-phosphate dehydrogenase, the Entner-Doudoroff enzymes and 6-phosphogluconate dehydrogenase, than cells grown on fumarate. With one exception O2 limited cultures had similar activities of the carbon catabolic enzymes to P i-limited cultures grown in the same substrate. Glucose-6-phosphate dehydrogenase in O2-limited cells grown of fumarate was 50% lower than in P i-limited cells. Co-utilization of fumarate and sucrose occurred with chemostat cultures supplied with both under a variety of conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 153 (1990), S. 455-462 
    ISSN: 1432-072X
    Keywords: GABA metabolism ; GABA transport ; Cowpea Rhizobium sp ; Bacteroid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase. Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...