Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 30 (1976), S. 41-62 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 126 (1980), S. 251-256 
    ISSN: 1432-072X
    Keywords: Rhizobium leguminosarum ; Alkaline phosphatase ; Phosphomonoesterase ; Mg2+, Zn2+-enzyme, K+ activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The alkaline phosphatase (EC 3.1.3.1.) from Rhizobium leguminosarum WU235 has been purified. The enzyme is a non-specific phosphomonoesterase, has a molecular weight of 78,500 and a sub-unit molecular weight of 39,400. Magnesium and zinc ions are implicated in the structure of the enzyme; atomic absorption analysis gave 1.9 g-atoms Mg2+ and 1.9–5.1 g-atoms Zn2+ per mole of enzyme. In addition high concentrations of Mg2+ markedly stimulate the enzyme. The phosphatase is inhibited by Li+ and Na+ and stimulated by K+, Rb+ and Cs+, which suggests that the enzyme is K+ activated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 128 (1980), S. 72-77 
    ISSN: 1432-072X
    Keywords: Rhizobium leguminosarum ; Glucose uptake ; Bacteroid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Free living cells of Rhizobium leguminosarum contain a constitutive glucose uptake system, except when they are grown on succinate, which appears to prevent its formation. Bacteroids isolated from Pisum sativum L fail to accumulate glucose although they actively take up 14C-succinate. Glucose uptake in free living cells is an active process since uptake was inhibited by azide, cyanide, dinitrophenol and carbonyl-m-chlorophenyl hydrazone but not by fluoride or arsenate. The non-metabolizable analogue α-methyl glucose was extracted unchanged from cells, showing that it was not phosphorylated during its transport. Galactose also appears to the transported via the glucose uptake system. Organic acids, amino acids and polyols had no effect on the actual uptake of glucose. The K m for α-methyl glucose uptake was 2.9×10-4 M.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 129 (1981), S. 238-239 
    ISSN: 1432-072X
    Keywords: Rhizobium ; Disaccharide ; Bacteroid ; Transport ; Nitrogen fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Slow growing strains of rhizobia appear to lack both uptake systems and catabolic enzymes for disaccharides. In the fast-growing strains of rhizobia there are uptake mechanisms and catabolic enzymes for disaccharide metabolism. In Rhizobium leguminosarum WU 163 and WU235 and R. trifolii WU290, sucrose and maltose uptake appears to be constitutive whereas in R. meliloti WU60 and in cowpea Rhizobium NGR234 uptake of these disaccharides is inducible. There is evidence that there are at least two distinct disaccharide uptake systems in fast-growing rhizobia, one transporting sucrose, maltose and trehalose and the other, lactose. Disaccharide uptake is via an active process since uptake is inhibited by azide, dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone but not by arsenate. Bacteroids of R. leguminosarum WU235 and R. lupini WU8 are unable to accumulate disaccharides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 149 (1988), S. 308-311 
    ISSN: 1432-072X
    Keywords: Ammonium transport ; Ammonium permease ; Rhizobium trifolii ; Cowpea Rhizobium sp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Free-living Rhizobium trifolii MNF 1001 and cowpea Rhizobium MNF 2030 grown in chemostat culture under nitrogen limitation had high activities of an ammonium permease. In phosphate-limited, nitrogen-excess conditions, strains MNF 1001 and MNF 2030 retained 20% and 50%, respectively, of the ammonium uptake activity found in nitrogen-limited cells. Uptake in both strains was sensitive to azide, cyanide, carbonyl cyanide m-chlorophenyl hydrazone and 2,4-dinitrophenol. A gradient of ammonium concentration greater than 150-fold developed across the membrane within 20 min in cells of strain MNF 1001 grown under ammonia limitation. The pH optimum for ammonium uptake by N-limited cells of both MNF 1001 and MNF 2030 was around pH 7. The apparent K m values for the ammonium permease in strains MNF 2030 and MNF 1001 were 3.9±1.6 μM and 2.0±1.6 μM respectively, and the V max was 47±2.6 nmol min-1 (mg protein)-1 for MNF 2030 and 101±5.1 nmol min-1 (mg protein)-1 for MNF 1001. Isolated snake bean bacteroids of strain MNF 2030 capable of transporting succinate and l-glutamate had no detectable ammonium uptake activity. It therefore appears that the ammonium permeases in cells of these two strains are not as tightly regulated as in R. leguminosarum MNF 3841.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 148 (1987), S. 34-39 
    ISSN: 1432-072X
    Keywords: Rhizobium trifolii ; Motility mutants ; Nodulating competitiveness ; Nodulaton ; Rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Non-motile mutants of Rhizobium trifolii defective in either flagellar synthesis or function were isolated by transposon Tn5 mutagenesis. they were indistinguishable from motile control strains in growth in both laboratory media and in the rhizosphere of clover roots. When each non-motile mutant was grown together with a motile strain in continuous culture, the numbers of motile and non-motile organisms remained in constant proportion, implying that their growth rates were essentially identical. When inoculated separately onto clover roots, the mutants and wildtype did not differ significantly in the number of nodules produced or in nitrogen fixing activity. However, when mixtures of equal numbers of mutant and wild-type cells were inoculated onto clover roots, the motile strain formed approximately five times more nodules than the flagellate or non-flagellate, non-motile mutants, suggesting that motility is a factor in competition for nodule formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Rhizobial nitrogen utilization ; Glutamate transport ; Glutamate utilization ; Rhizobium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When growing on a mixture of ammonia and l-glutamate as nitrogen sources, Rhizobium leguminosarum biovar trifolii MNF1000 utilizes ammonia exclusively, while cowpea Rhizobium MNF2030 utilizes both compounds at similar rates. l-Glutamate transport in both strain MNF1000 and MNF2030 is active, giving rise to a 60-fold concentration gradient across the membrane of cells of strain MNF2030. Both strains produce two kinetically distinguishable glutamate transport systems under all conditions of growth — a high affinity system with an apparent K m of 0.06–0.17 μM but of relatively low V max, and a low affinity system with a K m of 1.2–6.7\ μM, but of higher overall capacity. l-Glutamate transport activity in cells of MNF2030 was relatively insensitive to the presence of ammonia in the growth medium. By contrast, ammonia in the growth medium resulted in low activities of glutamate transport in cells of MNF1000 which were provided with a carbon source, offering one explanation for the failure of this strain to use glutamate in the presence of ammonia. However, in cells of MNF1000 growing on glutamate as sole source of carbon and nitrogen, the glutamate transport system is synthesized, even in the presence of accumulated or added ammonia. This suggests that the regulation of the glutamate permease also depends on availability of carbon source.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Rhizobium leguminosarum ; Aromatic metabolism ; Aromatic uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhizobium leguminosarum biovar viciae and Rhizobium leguminosarum biovar trifolii have separate uptake systems for 4-hydroxybenzoate and protocatechuate. The 4-hydroxybenzoate uptake system (pobP) is inhibited by a range of compounds with substitution at the 4-position on the aromatic ring whereas the uptake system for protocatechuate (pcaP) is markedly inhibited only by other dihydroxybenzoic acids. The rate of 4-hydroxybenzoate uptake is very low in Rhizobium leguminosarum and Rhizobium trifolii grown on protocatechuate but mutants defective in 4-hydroxybenzoate uptake transport protocatechuate at rates similar to the wild-type grown under similar conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 161 (1994), S. 333-339 
    ISSN: 1432-072X
    Keywords: Siderophore ; Hydroxamate ; Iron transport ; Rhizobium leguminosarum ; Trihydroxamate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The trihydroxamate siderophore, hydroxamate K, has been purified from culture filtrates of iron-deficient Rhizobium leguminosarum biovar viciae MNF710. The iron complex has a molecular weight of 828 and an absorption maximum at 443 nm (εM=1510). 55Fe complexed to purified hydroxamate K was taken up by MNF710, its hydroxamate-negative mutant MNF7102 and Rhizobium leguminosarum biovar trifolii WU95 via an iron-regulated transport system, but Rhizobium meliloti U45 failed to take up the iron-siderophore complex under any conditions. A similar pattern of iron uptake was observed with ferrioxamine B. MNF710, MNF7102, U45 and WU95 all transported 55Fe-ferrichrome but only the first three strains took up 55Fe-ferrichrome A. All these 55Fe-trihydroxamate uptake systems were ironregulated in MNF710, MNF7102 and WU95. In contrast, uptake of 55Fe-rhodotorulate, a dihydroxamate, was essentially constitutive in all four organisms. Similarly, uptake of 55Fe-citrate and 55Fe-nitrilotriacetic acid was constitutive. None of the strains took up 55Fe complexed with enterobactin or with pyoverdins from Pseudomonas aeruginosa ATCC15692 (PAO1) and Pseudomonas fluorescens ATCC17400.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...