Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Ischemia ; Hypoglycemia ; Calcium transient ; Insulin ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The primary objective of this study was to explore why preischemic hypoglycemia, which restricts tissue acidosis during the ischemic insult, does not ameliorate cell damage incurred as a result of transient ischemia. The question arose whether hypoglycemia (plasma glucose concentration 2–3 mM) delays resumption of extrusion of Ca2+ from cells during recirculation. Measurements of extracellular Ca2+ concentration during forebrain ischemia of 15 min duration proved that this was the case. Thus, normoglycemic animals resumed Ca2+ extrusion upon recirculation after a delay of 1.5–2.0 min, and hypoglycemic ones after an additional delay which could amount to 3–4 min. We attempted to explore the cause of this delay. At first sight, the results suggested that resumption of oxidative phosphorylation upon recirculation was substrate limited. However, glucose infusion during ischemia or just after recirculation failed to accelerate Ca2+ extrusion from the cells. A comparison between non-injected and insulin-injected animals at equal plasma glucose concentrations suggested that insulin was responsible for the delay. On analysis, the delay proved to be related to a sluggish recovery of cerebral blood flow. The results suggest that when cell damage is evaluated after transient ischemia in hypo- and normoglycemic subjects, attention should be directed to the period of cell calcium ‘overload’. Unobserved differences in the duration of the calcium transient may also confound interpretation of data on the effects of insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Key words Forebrain ischemia ; Hyperglycemia ; Hippocampus ; Bioenergetic state ; Cyclosporin A ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  A recent study from this laboratory has shown that brief transient ischemia (2 min 30 s) in normo- and hyperglycemic rats leads to moderate neuronal necrosis in CA1 cells of the hippocampus, of equal density in the two groups. However, hyperglycemic animals failed to depolarize during the ischemia, nor did they show a decrease in extracellular calcium concentration. The present study was undertaken to study the metabolic correlates to these unexpected findings. Normoglycemic (plasma glucose ∼6 mM) and hyperglycemic (∼20 mM) rats were subjected to ischemic periods of 1 min and 2 min 15 s (2 min 30 s with freezing delay considered), and their brains were frozen in situ. Samples of dorsal hippocampus were dissected at –22°C and extracted for the measurement of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glucose, glycogen, and lactate. Normoglycemic animals showed rapid depletion of PCr, ATP, glucose, and glycogen, and a rise in lactate content to 10–12 mM·kg–1 during the ischemia. Hyperglycemic animals displayed a more moderate rate of fall of PCr and ATP, with ATP values exceeding 50% of control after 2 min 30 s. Glycogen stores were largely maintained, but degradation of glucose somewhat enhanced the lactic acidosis. The results demonstrate that hyperglycemic rats maintained ATP at levels sufficient to prevent cell depolarization and calcium influx during the ischemic period. However, the metabolic perturbation observed must have been responsible for the delayed neuronal damage. We speculate that lowered ATP, increased inorganic P, and oxidative stress triggered a delayed mitochondrial permeability transition (MPT), which led to delayed neuronal necrosis. This assumption was supported by a second series of experiments in which CA1 damage in hyperglycemic rats was prevented by cyclosporin A, a virtually specific inhibitor of the MPT.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6903
    Keywords: Brain ; caspase ; cytochrome c ; hypoglycemia ; Bcl-2 family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study, we explored if a 30 minute period of hypoglycemic coma yields damage which shows some features associated with apoptosis. To that end, we induced insulin-hypoglycemic coma of 30 min duration, and studied brain tissues after the coma period, and after recovery period of 30 min, 3 h, and 6 h. Histopathological data confirmed neuronal damage in all of the vulnerable neuronal populations. Release of cytochrome c (cyt c), assessed by Western Blot, was observed in the neocortex and caudoputamen after 3 and 6 h of recovery. In these regions, the caspase-like activity increased above control after 6 h of recovery. By laser-scanning confocal microscopy, a clear expression of Bax was observed after 30 min of coma in the superficial layers of the neocortex, reaching a peak after 30 min of recovery. Punctuate immunolabeling surrounding nuclei in soma and dendrites in cortical pyramidal neurons likely represents mitochondria, which suggests that Bax protein assembled at the surface of mitochondria in vulnerable neocortical neurons. It is concluded that although previous morphological data have suggested that cells die by necrosis, neuronal damage after hypoglycemic coma shows some features of apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...